
Polkadot Protocol Spec

Table of contents:

Polkadot Protocol

Polkadot Host

📄️ 1. Overview

📄️ 2. States and Transitions

📄️ 3. Synchronization

📄️ 4. Networking

📄️ 5. Block Production

📄️ 6. Finality

📄️ 7. Light Clients

📄️ 8. Availability & Validity

1. Overview

1.1. Light Client​

1.2. Full Node​

1.3. Authoring Node​

1.4. Relaying Node​

2. States and Transitions

2.1. Introduction​

2.1.1. Block Tree​

2.2. State Replication​

2.2.1. Block Format​

2.3. Extrinsics​

2.3.1. Preliminaries​

2.3.2. Transactions​

2.3.3. Inherents​

2.4. State Storage Trie​

2.4.1. Accessing System Storage​

2.4.2. General Structure​

2.4.3. Trie Structure​

2.4.4. Merkle Proof​

2.4.5. Managing Multiple Variants of State​

2.5. Child Storage​

2.5.1. Child Tries​

2.6. Runtime Interactions​

2.6.1. Interacting with the Runtime​

2.6.2. Loading the Runtime Code​

2.6.3. Code Executor​

2.6.3.1. Memory Management​

2.6.3.2. Sending Data to a Runtime Entrypoint​

2.6.3.3. Receiving Data from a Runtime Entrypoint​

2.6.3.4. Runtime Version Custom Section​

3. Synchronization

3.1. Warp Sync​

3.2. Fast Sync​

3.3. Full Sync​

3.3.1. Consensus Authority Set​

3.3.2. Runtime-to-Consensus Engine Message​

3.4. Importing and Validating Block​

4. Networking

4.1. Introduction​

4.2. External Documentation​

4.3. Node Identities​

4.4. Discovery mechanism​

4.5. Connection establishment​

4.6. Encryption Layer​

4.7. Protocols and Substreams​

4.8. Network Messages​

4.8.1. Announcing blocks​

4.8.2. Requesting Blocks​

4.8.3. Requesting States​

4.8.4. Warp Sync​

4.8.5. Transactions​

4.8.6. GRANDPA Messages​

4.8.6.1. GRANDPA Neighbor Messages​

4.8.6.2. GRANDPA Catch-up Messages​

5. Block Production

5.1. Introduction​

5.1.1. Block Producer​

5.1.2. Block Authoring Session Key Pair​

5.2. Block Production Lottery​

5.2.1. Primary Block Production Lottery​

5.3. Slot Number Calculation​

5.4. Production Algorithm​

5.5. Epoch Randomness​

5.6. Verifying Authorship Right​

5.7. Block Building Process​

6. Finality

6.1. Introduction​

6.2. Initiating the GRANDPA State​

6.2.1. Voter Set Changes​

6.3. Rejoining the Same Voter Set​

6.4. Voting Process in Round r{r}r​

6.5. Forced Authority Set Changes​

6.6. Block Finalization​

6.6.1. Catching up​

6.6.1.1. Sending the catch-up requests​

6.6.1.2. Processing the catch-up requests​

6.6.1.3. Processing catch-up responses​

7. Light Clients

7.1. Requirements for Light Clients​

7.2. Warp Sync for Light Clients​

7.3. Runtime Environment for Light Clients​

7.4. Light Client Messages​

7.4.1. Request​

7.4.2. Response​

7.4.3. Remote Call Messages​

7.4.4. Remote Read Messages​

7.4.5. Remote Read Child Messages​

7.5. Storage for Light Clients​

8. Availability & Validity

8.1. Collations​

8.2. Candidate Backing​

8.2.1. Statements​

8.2.2. Inclusion​

8.3. Candidate Validation​

8.3.1. Parachain Runtime​

8.3.2. Runtime Compression​

8.4. Availability​

8.4.1. Availability Votes​

8.4.2. Candidate Recovery​

8.5. Approval Voting​

8.5.1. Assignment Criteria​

8.5.2. Tranches​

8.6. Disputes​

8.7. Network Messages​

8.7.1. Notification Messges​

8.7.2. Request & Response​

8.7.2.1. Dispute Request​

8.7.2.2. Dispute Response​

8.8. Definitions​

Polkadot Runtime

📄️ 9. Extrinsics

📄️ 10. Weights

📄️ 11. Consensus

📄️ 12. Metadata

9. Extrinsics

9.1. Introduction​

9.2. Preliminaries​

9.3. Extrinsics Body​

9.3.1. Version 4​

9.3.2. Mortality​

9.3.2.1. Example​

9.3.2.2. Encoding​

10. Weights

10.1. Motivation​

10.2. Assumptions​

10.2.1. Limitations​

10.3. Calculation of the weight function​

10.4. Benchmarking​

10.4.1. Primitive Types​

10.4.1.1. Considerations​

10.4.2. Parameters​

10.4.2.1. Weight Refunds​

10.4.3. Storage I/O cost​

10.4.4. Environment​

10.5. Practical examples​

10.5.1. Practical Example #1: request_judgement​

10.5.1.1. Analysis​

10.5.1.2. Considerations​

10.5.1.3. Benchmarking Framework​

10.5.2. Practical Example #2: payout_stakers​

10.5.2.1. Analysis​

10.5.2.2. Considerations​

10.5.2.3. Benchmarking Framework​

10.5.3. Practical Example #3: transfer​

10.5.3.1. Analysis​

10.5.3.2. Considerations​

10.5.3.3. Benchmarking Framework​

10.5.4. Practical Example #4: withdraw_unbounded​

10.5.4.1. Analysis​

10.5.4.2. Parameters​

10.5.4.3. Considerations​

10.5.4.4. Benchmarking Framework​

10.6. Fees​

10.6.1. Fee Calculation​

10.6.2. Definitions in Polkadot​

10.6.3. Fee Multiplier​

10.6.3.1. Update Multiplier​

11. Consensus

11.1. BABE digest messages​

12. Metadata

12.1. Structure​

12.2. Pallet Metadata​

12.3. Extrinsic Metadata​

Appendix A: Cryptography & Encoding

A.1. Cryptographic Algorithms​

A.1.1. Hash Functions​

A.1.1.1. BLAKE2​

A.1.2. Randomness​

A.1.3. VRF​

A.1.3.1. Transcript​

A.1.4. Cryptographic Keys​

A.1.4.1. Holding and staking funds​

A.1.4.2. Creating a Controller key​

A.1.4.3. Designating a proxy for voting​

A.1.4.4. Controller settings​

A.1.4.5. Certifying keys​

A.2. Auxiliary Encodings​

A.2.1. Binary Enconding​

A.2.2. SCALE Codec​

A.2.2.1. Length and Compact Encoding​

A.2.3. Hex Encoding​

A.3. Chain Specification​

A.3.1. Chain Spec​

A.3.2. Chain Spec Extensions​

A.3.3. Genesis State​

A.4. Erasure Encoding​

A.4.1. Erasure Encoding​

Bibliography​

Appendix B: Host API

B.1. Preliminaries​

B.2. Storage​

B.2.1. ext_storage_set​

B.2.1.1. Version 1 - Prototype​

B.2.2. ext_storage_get​

B.2.2.1. Version 1 - Prototype​

B.2.3. ext_storage_read​

B.2.3.1. Version 1 - Prototype​

B.2.4. ext_storage_clear​

B.2.4.1. Version 1 - Prototype​

B.2.5. ext_storage_exists​

B.2.5.1. Version 1 - Prototype​

B.2.6. ext_storage_clear_prefix​

B.2.6.1. Version 1 - Prototype​

B.2.6.2. Version 2 - Prototype​

B.2.7. ext_storage_append​

B.2.7.1. Version 1 - Prototype​

B.2.8. ext_storage_root​

B.2.8.1. Version 1 - Prototype​

B.2.8.2. Version 2 - Prototype​

B.2.9. ext_storage_changes_root​

B.2.9.1. Version 1 - Prototype​

B.2.10. ext_storage_next_key​

B.2.10.1. Version 1 - Prototype​

B.2.11. ext_storage_start_transaction​

B.2.11.1. Version 1 - Prototype​

B.2.12. ext_storage_rollback_transaction​

B.2.12.1. Version 1 - Prototype​

B.2.13. ext_storage_commit_transaction​

B.2.13.1. Version 1 - Prototype​

B.3. Child Storage​

B.3.1. ext_default_child_storage_set​

B.3.1.1. Version 1 - Prototype​

B.3.2. ext_default_child_storage_get​

B.3.2.1. Version 1 - Prototype​

B.3.3. ext_default_child_storage_read​

B.3.3.1. Version 1 - Prototype​

B.3.4. ext_default_child_storage_clear​

B.3.4.1. Version 1 - Prototype​

B.3.5. ext_default_child_storage_storage_kill​

B.3.5.1. Version 1 - Prototype​

B.3.5.2. Version 2 - Prototype​

B.3.5.3. Version 3 - Prototype​

B.3.6. ext_default_child_storage_exists​

B.3.6.1. Version 1 - Prototype​

B.3.7. ext_default_child_storage_clear_prefix​

B.3.7.1. Version 1 - Prototype​

B.3.7.2. Version 2 - Prototype​

B.3.8. ext_default_child_storage_root​

B.3.8.1. Version 1 - Prototype​

B.3.8.2. Version 2 - Prototype​

B.3.9. ext_default_child_storage_next_key​

B.3.9.1. Version 1 - Prototype​

B.4. Crypto​

B.4.1. ext_crypto_ed25519_public_keys​

B.4.1.1. Version 1 - Prototype​

B.4.2. ext_crypto_ed25519_generate​

B.4.2.1. Version 1 - Prototype​

B.4.3. ext_crypto_ed25519_sign​

B.4.3.1. Version 1 - Prototype​

B.4.4. ext_crypto_ed25519_verify​

B.4.4.1. Version 1 - Prototype​

B.4.5. ext_crypto_ed25519_batch_verify​

B.4.5.1. Version 1​

B.4.6. ext_crypto_sr25519_public_keys​

B.4.6.1. Version 1 - Prototype​

B.4.7. ext_crypto_sr25519_generate​

B.4.7.1. Version 1 - Prototype​

B.4.8. ext_crypto_sr25519_sign​

B.4.8.1. Version 1 - Prototype​

B.4.9. ext_crypto_sr25519_verify​

B.4.9.1. Version 1 - Prototype​

B.4.9.2. Version 2 - Prototype​

B.4.10. ext_crypto_sr25519_batch_verify​

B.4.10.1. Version 1​

B.4.11. ext_crypto_ecdsa_public_keys​

B.4.11.1. Version 1 - Prototype​

B.4.12. ext_crypto_ecdsa_generate​

B.4.12.1. Version 1 - Prototype​

B.4.13. ext_crypto_ecdsa_sign​

B.4.13.1. Version 1 - Prototype​

B.4.14. ext_crypto_ecdsa_sign_prehashed​

B.4.14.1. Version 1 - Prototype​

B.4.15. ext_crypto_ecdsa_verify​

B.4.15.1. Version 1 - Prototype​

B.4.15.2. Version 2 - Prototype​

B.4.16. ext_crypto_ecdsa_verify_prehashed​

B.4.16.1. Version 1 - Prototype​

B.4.17. ext_crypto_ecdsa_batch_verify​

B.4.17.1. Version 1​

B.4.18. ext_crypto_secp256k1_ecdsa_recover​

B.4.18.1. Version 1 - Prototype​

B.4.18.2. Version 2 - Prototype​

B.4.19. ext_crypto_secp256k1_ecdsa_recover_compressed​

B.4.19.1. Version 1 - Prototype​

B.4.19.2. Version 2 - Prototype​

B.4.20. ext_crypto_start_batch_verify​

B.4.20.1. Version 1 - Prototype​

B.4.21. ext_crypto_finish_batch_verify​

B.4.21.1. Version 1 - Prototype​

B.5. Hashing​

B.5.1. ext_hashing_keccak_256​

B.5.1.1. Version 1 - Prototype​

B.5.2. ext_hashing_keccak_512​

B.5.2.1. Version 1 - Prototype​

B.5.3. ext_hashing_sha2_256​

B.5.3.1. Version 1 - Prototype​

B.5.4. ext_hashing_blake2_128​

B.5.4.1. Version 1 - Prototype​

B.5.5. ext_hashing_blake2_256​

B.5.5.1. Version 1 - Prototype​

B.5.6. ext_hashing_twox_64​

B.5.6.1. Version 1 - Prototype​

B.5.7. ext_hashing_twox_128​

B.5.7.1. Version 1 - Prototype​

B.5.8. ext_hashing_twox_256​

B.5.8.1. Version 1 - Prototype​

B.6. Offchain​

B.6.1. ext_offchain_is_validator​

B.6.1.1. Version 1 - Prototype​

B.6.2. ext_offchain_submit_transaction​

B.6.2.1. Version 1 - Prototype​

B.6.3. ext_offchain_network_state​

B.6.3.1. Version 1 - Prototype​

B.6.4. ext_offchain_timestamp​

B.6.4.1. Version 1 - Prototype​

B.6.5. ext_offchain_sleep_until​

B.6.5.1. Version 1 - Prototype​

B.6.6. ext_offchain_random_seed​

B.6.6.1. Version 1 - Prototype​

B.6.7. ext_offchain_local_storage_set​

B.6.7.1. Version 1 - Prototype​

B.6.8. ext_offchain_local_storage_clear​

B.6.8.1. Version 1 - Prototype​

B.6.9. ext_offchain_local_storage_compare_and_set​

B.6.9.1. Version 1 - Prototype​

B.6.10. ext_offchain_local_storage_get​

B.6.10.1. Version 1 - Prototype​

B.6.11. ext_offchain_http_request_start​

B.6.11.1. Version 1 - Prototype​

B.6.12. ext_offchain_http_request_add_header​

B.6.12.1. Version 1 - Prototype​

B.6.13. ext_offchain_http_request_write_body​

B.6.13.1. Version 1 - Prototype​

B.6.14. ext_offchain_http_response_wait​

B.6.14.1. Version 1 - Prototype​

B.6.15. ext_offchain_http_response_headers​

B.6.15.1. Version 1 - Prototype​

B.6.16. ext_offchain_http_response_read_body​

B.6.16.1. Version 1 - Prototype​

B.7. Offchain Index​

B.7.1. Offchain_index_set​

B.7.1.1. Version 1 - Prototype​

B.7.2. Offchain_index_clear​

B.7.2.1. Version 1 - Prototype​

B.8. Trie​

B.8.1. ext_trie_blake2_256_root​

B.8.1.1. Version 1 - Prototype​

B.8.1.2. Version 2 - Prototype​

B.8.2. ext_trie_blake2_256_ordered_root​

B.8.2.1. Version 1 - Prototype​

B.8.2.2. Version 2 - Prototype​

B.8.3. ext_trie_keccak_256_root​

B.8.3.1. Version 1 - Prototype​

B.8.3.2. Version 2 - Prototype​

B.8.4. ext_trie_keccak_256_ordered_root​

B.8.4.1. Version 1 - Prototype​

B.8.4.2. Version 2 - Prototype​

B.8.5. ext_trie_blake2_256_verify_proof​

B.8.5.1. Version 1 - Prototype​

B.8.5.2. Version 2 - Prototype​

B.8.6. ext_trie_keccak_256_verify_proof​

B.8.6.1. Version 1 - Prototype​

B.8.6.2. Version 2 - Prototype​

B.9. Miscellaneous​

B.9.1. ext_misc_print_num​

B.9.1.1. Version 1 - Prototype​

B.9.2. ext_misc_print_utf8​

B.9.2.1. Version 1 - Prototype​

B.9.3. ext_misc_print_hex​

B.9.3.1. Version 1 - Prototype​

B.9.4. ext_misc_runtime_version​

B.9.4.1. Version 1 - Prototype​

B.10. Allocator​

B.10.1. ext_allocator_malloc​

B.10.1.1. Version 1 - Prototype​

B.10.2. ext_allocator_free​

B.10.2.1. Version 1 - Prototype​

B.11. Logging​

B.11.1. ext_logging_log​

B.11.1.1. Version 1 - Prototype​

B.11.2. ext_logging_max_level​

B.11.2.1. Version 1 - Prototype​

B.12. Abort Handler​

B.12.1. ext_panic_handler_abort_on_panic​

B.12.1.1. Version 1 - Prototype​

Appendix C: Runtime API

C.1. General Information​

C.1.1. JSON-RPC API for external services​

C.2. Runtime Constants​

C.2.1. __heap_base​

C.3. Runtime Call Convention​

C.4. Module Core​

C.4.1. Core_version​

C.4.2. Core_execute_block​

C.4.3. Core_initialize_block​

C.5. Module Metadata​

C.5.1. Metadata_metadata​

C.5.2. Metadata_metadata_at_version​

C.5.3. Metadata_metadata_versions​

C.6. Module BlockBuilder​

C.6.1. BlockBuilder_apply_extrinsic​

C.6.2. BlockBuilder_finalize_block​

C.6.3. BlockBuilder_inherent_extrinisics:​

C.6.4. BlockBuilder_check_inherents​

C.7. Module TaggedTransactionQueue​

C.7.1. TaggedTransactionQueue_validate_transaction​

C.8. Module OffchainWorkerApi​

C.8.1. OffchainWorkerApi_offchain_worker​

C.9. Module ParachainHost​

C.9.1. ParachainHost_validators​

C.9.2. ParachainHost_validator_groups​

C.9.3. ParachainHost_availability_cores​

C.9.4. ParachainHost_persisted_validation_data​

C.9.5. ParachainHost_assumed_validation_data​

C.9.6. ParachainHost_check_validation_outputs​

C.9.7. ParachainHost_session_index_for_child​

C.9.8. ParachainHost_validation_code​

C.9.9. ParachainHost_validation_code_by_hash​

C.9.10. ParachainHost_validation_code_hash​

C.9.11. ParachainHost_candidate_pending_availability​

C.9.12. ParachainHost_candidate_events​

C.9.13. ParachainHost_session_info​

C.9.14. ParachainHost_dmq_contents​

C.9.15. ParachainHost_inbound_hrmp_channels_contents​

C.9.16. ParachainHost_on_chain_votes​

C.9.17. ParachainHost_pvfs_require_precheck​

C.9.18. ParachainHost_submit_pvf_check_statement​

C.9.19. ParachainHost_disputes​

C.9.20. ParachainHost_executor_params​

C.10. Module GrandpaApi​

C.10.1. GrandpaApi_grandpa_authorities​

C.10.2. GrandpaApi_current_set_id​

C.10.3. GrandpaApi_submit_report_equivocation_unsigned_extrinsic​

C.10.4. GrandpaApi_generate_key_ownership_proof​

C.11. Module BabeApi​

C.11.1. BabeApi_configuration​

C.11.2. BabeApi_current_epoch_start​

C.11.3. BabeApi_current_epoch​

C.11.4. BabeApi_next_epoch​

C.11.5. BabeApi_generate_key_ownership_proof​

C.11.6. BabeApi_submit_report_equivocation_unsigned_extrinsic​

C.12. Module AuthorityDiscoveryApi​

C.12.1. AuthorityDiscoveryApi_authorities​

C.13. Module SessionKeys​

C.13.1. SessionKeys_generate_session_keys​

C.13.2. SessionKeys_decode_session_keys​

C.14. Module AccountNonceApi​

C.14.1. AccountNonceApi_account_nonce​

C.15. Module TransactionPaymentApi​

C.15.1. TransactionPaymentApi_query_info​

C.15.2. TransactionPaymentApi_query_fee_details​

C.16. Module TransactionPaymentCallApi​

C.16.1. TransactionPaymentCallApi_query_call_info​

C.16.2. TransactionPaymentCallApi_query_call_fee_details​

C.17. Module Nomination Pools​

C.17.1. NominationPoolsApi_pending_rewards​

C.17.2. NominationPoolsApi_points_to_balance​

C.17.3. NominationPoolsApi_balance_to_points​

Glossary

Polkadot Protocol

Formally, Polkadot is a replicated sharded state machine designed to resolve the scalability and interoperability among blockchains. In Polkadot

vocabulary, shards are called parachains and Polkadot relay chain is part of the protocol ensuring global consensus among all the parachains. The

Polkadot relay chain protocol, henceforward called Polkadot protocol, can itself be considered as a replicated state machine on its own. As such, the

protocol can be specified by identifying the state machine and the replication strategy.

From a more technical point of view, the Polkadot protocol has been divided into two parts, the Polkadot Runtime and the Polkadot Host. The

Runtime comprises the state transition logic for the Polkadot protocol and is designed and be upgradable via the consensus engine without

requiring hard forks of the blockchain. The Polkadot Host provides the necessary functionality for the Runtime to execute its state transition logic,

such as an execution environment, I/O, consensus and network interoperability between parachains. The Polkadot Host is planned to be stable and

mostly static for the lifetime duration of the Polkadot protocol, the goal being that most changes to the protocol are primarily conducted by applying

Runtime updates and not having to coordinate with network participants on manual software updates.

CAUTION

This specification is Work-In-Progress and any content, structure, design and/or hyper/anchor-link is subject to change.

https://spec.polkadot.network/part-polkadot-runtime
https://spec.polkadot.network/part-polkadot-host

Polkadot Host

With the current document, we aim to specify the Polkadot Host part of the Polkadot protocol as a replicated state machine. After defining the

different types of hosts in Chapter 1, we proceed to specify the representation of a valid state of the Protocol in Chapter 2. We also identify the

protocol states by explaining the Polkadot state transition and discussing the detail based on which the Polkadot Host interacts with the state

transition function, i.e., Runtime, in the same chapter. Following, we specify the input messages triggering the state transition and the system

behavior. In Chapter 4, we specify the communication protocols and network messages required for the Polkadot Host to communicate with other

nodes in the network, such as exchanging blocks and consensus messages. In Chapter 5 and Chapter 6, we specify the consensus protocol, which

is responsible for keeping all the replicas in the same state. Finally, the initial state of the machine is identified and discussed in Section A.3.3.. A

Polkadot Host implementation that conforms with this part of the specification should successfully be able to sync its states with the Polkadot

network.

📄️ 1. Overview

The Polkadot Protocol differentiates between different classes of Polkadot Hosts. Each class differs in its trust roots and how active or passively they interact with the …

📄️ 2. States and Transitions

2.1. Introduction

📄️ 3. Synchronization

Many applications that interact with the Polkadot network, to some extent, must be able to retrieve certain information about the network. Depending on the utility, this…

📄️ 4. Networking

This chapter in its current form is incomplete and considered work in progress. Authors appreciate receiving request for clarification or any reports regarding deviation …

📄️ 5. Block Production

5.1. Introduction

📄️ 6. Finality

6.1. Introduction

📄️ 7. Light Clients

7.1. Requirements for Light Clients

https://spec.polkadot.network/chap-overview
https://spec.polkadot.network/chap-state
https://spec.polkadot.network/chap-networking
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-overview
https://spec.polkadot.network/chap-state
https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/chap-networking
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/sect-lightclient
https://spec.polkadot.network/chapter-anv

📄️ 8. Availability & Validity

Polkadot serves as a replicated shared-state machine designed to resolve scalability issues and interoperability among blockchains. The validators of Polkadot execute…

https://spec.polkadot.network/chapter-anv

1. Overview
The Polkadot Protocol differentiates between different classes of Polkadot Hosts. Each class differs in its trust roots and how active or passively

they interact with the network.

1.1. Light Client
The light client is a mostly passive participant in the protocol. Light clients are designed to work in resource-constrained environments like browsers,

mobile devices, or even on-chain. Its main objective is to follow the chain, make queries to the full node on specific information on the recent state

of the blockchain, and add extrinsics (transactions). It does not maintain the full state, but rather queries the full node on the latest finalized state

and verifies the authenticity of the responses trustlessly. Details of specifications focused on Light Clients can be found in Chapter 7.

1.2. Full Node
While the full node is still a mostly passive participant of the protocol, they follow the chain by receiving and verifying every block in the chain. It

maintains a full state of the blockchain by executing the extrinsics in blocks. Their role in the consesus mechanism is limited to following the chain

and not producing the blocks.

Functional Requirements:

i. The node must populate the state storage with the official genesis state, elaborated further in Section A.3.3..

ii. The node should maintain a set of around 50 active peers at any time. New peers can be found using the discovery protocols (Section 4.4.)

iii. The node should open and maintain the various required streams (Section 4.7.) with each of its active peers.

iv. Furthermore, the node should send block requests (Section 4.8.2.) to these peers to receive all blocks in the chain and execute each of

them.

v. The node should exchange neighbor packets (Section 4.8.6.1.).

1.3. Authoring Node
The authoring node covers all the features of the full node, but instead of just passively following the protocol, it is an active participant, producing

blocks and voting in Grandpa.

Functional Requirements:

i. Verify that the Host’s session key is included in the current Epoch’s authority set (Section 3.3.1.).

ii. Run the BABE lottery (Chapter 5) and wait for the next assigned slot in order to produce a block.

iii. Gossip any produced blocks to all connected peers (Section 4.8.1.).

iv. Run the catch-up protocol (Section 6.6.1.) to make sure that the node is participating in the current round and not a past round.

v. Run the GRANDPA rounds protocol (Chapter 6).

1.4. Relaying Node
The relaying node covers all the features of the authoring node but also participants in the availability and validity process to process new parachain

blocks as described in Chapter 8.

https://spec.polkadot.network/sect-lightclient
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-networking#sect-discovery-mechanism
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/chap-networking#sect-grandpa-neighbor-msg
https://spec.polkadot.network/chap-sync#sect-authority-set
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chapter-anv

2. States and Transitions

2.1. Introduction
Definition 1. Discrete State Machine (DSM)

Definition 2. Path Graph

Definition 3. Blockchain

2.1.1. Block Tree

In the course of formation of a (distributed) blockchain, it is possible that the chain forks into multiple subchains in various block positions. We refer

to this structure as a block tree:

Definition 4. Block

A Discrete State Machine (DSM) is a state transition system that admits a starting state and whose set of states and set of transitions are

countable. Formally, it is a tuple of

where

 is the countable set of all possible inputs.

 is a countable set of all possible states.

 is the initial state.

 is the state-transition function, known as Runtime in the Polkadot vocabulary, such that

(Σ,S, s ​, δ)0

Σ

S

s ​ ∈0 S

δ

δ : S × Σ → S

A path graph or a path of nodes, formally referred to as , is a tree with two nodes of vertex degree 1 and the other n-2 nodes of vertex

degree 2. Therefore, can be represented by sequences of where for is the edge which

connect and .

n P ​n

P ​n v ​, … , v ​(1 n) e ​ =i v ​, v ​(i i+1) 1 ≤ i ≤ n − 1
v ​i v ​i+1

A blockchain is a directed path graph. Each node of the graph is called Block and indicated by . The unique sink of is called Genesis

Block, and the source is called the of . For any vertex where we say is the parent of , which is the child of

, respectively. We indicate that by:

The parent refers to the child by its hash value (Definition 10), making the path graph tamper-proof since any modifications to the child would

result in its hash value being changed.

C B C

Head C B ​,B ​(1 2) B ​ →1 B ​2 B ​2 B ​1

B ​2

B ​ :=2 P (B ​)1

INFO

The term "blockchain" can also be used as a way to refer to the network or system that interacts or maintains the directed path graph.

https://en.wikipedia.org/wiki/Directed_graph
https://spec.polkadot.network/chap-state#defn-block-header

When a block in the block tree gets finalized, there is an opportunity to prune the block tree to free up resources into branches of blocks that do not

contain all of the finalized blocks or those that can never be finalized in the blockchain (Chapter 6).

Definition 5. Pruned Block Tree

Definition 6 gives the means to highlight various branches of the block tree.

Definition 6. Subchain

Definition 7. Longest Chain

Definition 8. Longest Path

Because every block in the blockchain contains a reference to its parent, it is easy to see that the block tree is de facto a tree. A block tree naturally

imposes partial order relationships on the blocks as follows:

Definition 9. Descendant and Ancestor

The block tree of a blockchain, denoted by is the union of all different versions of the blockchain observed by the Polkadot Host such that

every block is a node in the graph and is connected to if is a parent of .

BT

B ​1 B ​2 B ​1 B ​2

By Pruned Block Tree, denoted by , we refer to a subtree of the block tree obtained by eliminating all branches which do not contain the

most recent finalized blocks (Definition 85). By pruning, we refer to the procedure of . When there is no risk of ambiguity and it is

safe to prune BT, we use to refer to .

PBT
BT ← PBT

BT PBT

Let be the root of the block tree and be one of its nodes. By , we refer to the path graph from to in . Conversely, for a

chain , we define the head of to be , formally noted as . We define , the length of as a path graph.

If is another node on , then by we refer to the subgraph of path graph which contains and

ends at and by we refer to its length.

Accordingly, is the set of all subchains of rooted at . The set of all chains of , is denoted by or simply

, for the sake of brevity.

G B Chain B() G B BT
C = Chain B() C B B = C C∣ ∣ C

B′ Chain B() SubChain B ,B(′) Chain B() B

B′ SubChain B ,B∣ (′)∣

C ​ BTB′ () BT B′ BT C ​ BTG() C BT() C

We define the following complete order over as follows. For chains we have that if either or

.

If we say if and only if the block arrival time (Definition 63) of is less than the block arrival time of , from the

subjective perspective of the Host. We define the to be the maximum chain given by this order.

C C ​,C ​ ∈1 2 C C ​ >1 C ​2 C ​ >∣ 1∣ C ​∣ 2∣ C ​ =∣ 1∣
C ​∣ 2∣

C ​ =∣ 1∣ C ​∣ 2∣ C ​ >1 C ​2 ​C1 ​C2

Longest-Chain BT()

 returns the path graph of which is the longest among all paths in and has the earliest block arrival time

(Definition 63). returns the head of chain.

Longest-Path BT() BT BT

Deepest-Leaf BT() Longest-Path BT()

We say is descendant of , formally noted as , if . Respectively, we say that is an ancestor of , formally

noted as , if .

B B′ B > B′ B > B ∈(∣ ∣ ∣ ′∣) C B′ B

B < B′ B < B ∈(∣ ∣ ∣ ′∣) C

https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chap-state#defn-chain-subchain
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-block-production#defn-block-time
https://spec.polkadot.network/sect-block-production#defn-block-time

2.2. State Replication
Polkadot nodes replicate each other’s state by syncing the history of the extrinsics. This, however, is only practical if a large set of transactions are

batched and synced at the time. The structure in which the transactions are journaled and propagated is known as a block of extrinsics (Section

2.2.1.). Like any other replicated state machine, state inconsistency can occur between Polkadot replicas. Section 2.4.5. gives an overview of how a

Polkadot Host node manages multiple variants of the state.

2.2.1. Block Format

A Polkadot block consists a block header (Definition 10) and a block body (Definition 13). The block body, in turn, is made up out of extrinsics ,

which represent the generalization of the concept of transactions. Extrinsics can contain any set of external data the underlying chain wishes to

validate and track.

Image 1. Block

Block

pos size type id
0 ... BlockHeader header
... ... BlockBody body

BlockHeader

BlockBody

Definition 10. Block Header

Image 2. Block Header

BlockHeader

pos size type id
0 32 parent_hash

32 ... Scale::CompactInt number
... 32 state_root
... 32 extrinsic_root
... ... Scale::CompactInt num_digests
... ... Digest digests

repeat num_digests.value times
Digest

Definition 11. Header Digest

The header of block B, , is a 5-tuple containing the following elements:

parent_hash: formally indicated as , is the 32-byte Blake2b hash (Section A.1.1.1.) of the SCALE encoded parent block header

(Definition 12).

number: formally indicated as , is an integer, which represents the index of the current block in the chain. It is equal to the number of

the ancestor blocks. The genesis state has the number 0.

state_root: formally indicated as , is the root of the Merkle trie, whose leaves implement the storage for the system.

extrinsics_root: is the field which is reserved for the Runtime to validate the integrity of the extrinsics composing the block body. For

example, it can hold the root hash of the Merkle trie which stores an ordered list of the extrinsics being validated in this block. The

extrinsics_root is set by the runtime and its value is opaque to the Polkadot Host. This element is formally referred to as .

digest: this field is used to store any chain-specific auxiliary data, which could help the light clients interact with the block without the

need of accessing the full storage as well as consensus-related data including the block signature. This field is indicated as (Definition

11).

H ​ Bh()

H ​p

H ​i

H ​r

H ​e

H ​d

https://spec.polkadot.network/chap-state#sect-block-format
https://spec.polkadot.network/chap-state#sect-managing-multiple-states
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/chap-state#img-block-header
https://spec.polkadot.network/chap-state#img-block-body
https://spec.polkadot.network/chap-state#img-digest
https://spec.polkadot.network/id-cryptography-encoding#sect-blake2
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-digest

Image 3. Digest

Digest

Digest::PreRuntime

Digest::PostRuntime

Digest::Seal

Digest::Empty

pos size type id
0 1 u1→TypeId type
1 ... switch (type) value

case type
:type_id_pre_runtime PreRuntime
:type_id_post_runtime PostRuntime

:type_id_seal Seal
:type_id_runtime_updated Empty

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id
0 4 str(ASCII) engine
4 ... Scale::Bytes payload

pos size type id

The header digest of block formally referred to by is an array of digest items ’s, known as digest items of varying data type

(Definition 178) such that:

where each digest item can hold one of the following type identifiers:

where

 is a 4-byte ASCII encoded consensus engine identifier

 is a SCALE-encoded byte array containing the message payload

Consensus Message, contains scale-encoded message from the Runtime to the consensus engine. The receiving engine is

determined by the id identifier:

id = BABE: a message to BABE engine (Definition 54)

id = FRNK: a message to GRANDPA engine (Definition 82)

Seal, is produced by the consensus engine and proves the authorship of the block producer. The engine used for this is provided

through id (at the moment, BABE), while contains the scale-encoded signature (Definition 66) of the block producer. In particular, the Seal

digest item must be the last item in the digest array and must be stripped off by the Polkadot Host before the block is submitted to any

Runtime function, including for validation. The Seal must be added back to the digest afterward.

Pre-Runtime digest, contains messages from the consensus engines to the runtime. Currently only used by BABE to pass the scale

encoded BABE Header (Definition 65) in with id = BABE .

Runtime Environment Updated digest, indicates that changes regarding the Runtime code or heap pages (Section 2.6.3.1.) occurred.

No additional data is provided.

B H ​ Bd() H ​d
i

H ​(B) :=d H ​, ...,H ​d
1

d
n

H ​ =d
i

​ ​

⎩
⎨
⎧4 → (t, id,m)

5 → (t, id,m)
6 → (t, id,m)
8 → (t)

id

m

t = 4 m

t = 5
m

t = 6
m

t = 8

https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-block-production#defn-block-signature
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/chap-state#sect-memory-management

Definition 12. Header Hash

Definition 13. Block Body

2.3. Extrinsics
The block body consists of an array of extrinsics. In a broad sense, extrinsics are data from outside of the state which can trigger state transitions.

This section describes extrinsics and their inclusion into blocks.

2.3.1. Preliminaries

The extrinsics are divided into two main categories defined as follows:

Transaction extrinsics are extrinsics which are signed using either of the key types (Section A.1.4.) and broadcasted between the nodes. Inherent

extrinsics are unsigned extrinsics that are generated by Polkadot Host and only included in the blocks produced by the node itself. They are

broadcasted as part of the produced blocks rather than being gossiped as individual extrinsics.

The Polkadot Host does not specify or limit the internals of each extrinsics and those are defined and dealt with by the Runtime (Definition 1). From

the Polkadot Host point of view, each extrinsics is simply a SCALE-encoded blob (Section A.2.2.).

2.3.2. Transactions

Transaction are submitted and exchanged through Transactions network messages (Section 4.8.5.). Upon receiving a Transactions message, the

Polkadot Host decodes the SCALE-encoded blob and splits it into individually SCALE-encoded transactions.

Alternatively, transactions can be submitted to the host by off-chain worker through the Host API (Section B.6.2.).

Any new transaction should be submitted to the Runtime (Section C.7.1.). This will allow the Polkadot Host to check the validity of the received

transaction against the current state and if it should be gossiped to other peers. If it considers the submitted transaction as valid, the Polkadot Host

should store it for inclusion in future blocks. The whole process of handling new transactions is described in more detail by Validate-Transactions-

and-Store.

Additionally, valid transactions that are supposed to be gossiped are propagated to connected peers of the Polkadot Host. While doing so the

Polkadot Host should keep track of peers already aware of each transaction. This includes peers which have already gossiped the transaction to the

node as well as those to whom the transaction has already been sent. This behavior is mandated to avoid resending duplicates and unnecessarily

overloading the network. To that aim, the Polkadot Host should keep a transaction pool and a transaction queue defined as follows:

The block header hash of block , , is the hash of the header of block encoded by simple codec:B H ​ Bh() B

H ​ B =h() Blake2b Enc ​ Head B(SC(()))

The block body consists of a sequence of extrinsics, each encoded as a byte array. The content of an extrinsic is completely opaque to the

Polkadot Host. As such, from the point of the Polkadot Host, and is simply a SCALE encoded array of byte arrays. The body of Block

represented as is defined to be:

Where each is a SCALE encoded extrinsic.

Image 4. Block Body

BlockBody

BlockBody::Transaction
pos size type id
0 ... Scale::CompactInt num_transactions
... ... Transaction transactions

repeat num_transactions.value times

pos size type id
0 ... Scale::CompactInt len_data
... len_data.value data

B

Body B()

Body(B) := Enc ​(E ​, ...,E ​)SC 1 n

E ​ ∈i B

https://spec.polkadot.network/id-cryptography-encoding#sect-cryptographic-keys
https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-host-api#sect-ext-offchain-submit-transaction
https://spec.polkadot.network/chap-runtime-api#sect-rte-validate-transaction
https://spec.polkadot.network/chap-state#algo-validate-transactions

Definition 14. Transaction Queue

Furthermore, Validate-Transactions-and-Store updates the transaction pool and the transaction queue according to the received message:

Algorithm 1. Validate Transactions and Store

Algorithm 2. Maintain Transaction Pool

The Transaction Queue of a block producer node, formally referred to as is a data structure which stores the transactions ready to be

included in a block sorted according to their priorities (Section 4.8.5.). The Transaction Pool, formally referred to as , is a hash table in

which the Polkadot Host keeps the list of all valid transactions not in the transaction queue.

TQ

TP

Algorithm Validate-Transactions-and-Store

for all do
 Head(Longest-Chain())

 Call-Runtime-Entry()
if Valid() then

if Requires() Provided-Tags() then
Insert-At(Requires() Priority())

else
Add-To()

end if
Maintain-Transaction-Pool()
if ShouldPropagate() then

Propagate()
end if

end if
end for

where

 is the transaction message (offchain transactions?)

 decodes the SCALE encoded message.

 is defined in Definition 7.

 is a Runtime entrypoint specified in Section C.7.1. and ,

 and refer to the corresponding fields in the tuple returned by the entrypoint when it deems that is valid.

 is the list of tags that transaction provides. The Polkadot Host needs to keep track of tags that transaction

provides as well as requires after validating it.

 places into approperietly such that the transactions providing the tags which

requires or have higher priority than are ahead of .

 is described in Maintain-Transaction-Pool.

 indicates whether the transaction should be propagated based on the Propagate field in the ValidTransaction
type as defined in Definition 218, which is returned by .

 sends to all connected peers of the Polkadot Host who are not already aware of .

1: L ← Dec ​(M ​)SC T

2: {T ∈ L ∣ T ∈/ TQ ∣ T ∈/ TP}
3: B ​ ←d BT

4: N ← H ​(B ​)n d

5: R ← TaggedTransactionQueue_validate_transaction,N ,T
6: R

7: R ⊂ ​⋃∀T∈(TQ ∪ B ​∣∃i ​)i ∣d>i
T

8: TQ,T , R , R

9:

10: TP ,T
11:

12:

13: R

14: T

15:

16:

17:

M ​T

Dec ​SC

Longest-Chain

TaggedTransactionQueue_validate_transaction Requires R()
Priority R() Propagate R() T

Provided-Tags T() T T

Insert-At TQ,T , Requires R , Priority R(() ()) T TQ T

T T

Maintain-Transaction-Pool

ShouldPropagate
TaggedTransactionQueue_validate_transaction

Propagate T() T T

Algorithm Maintain-Transaction-Pool

Scan the pool for ready transactions
Move them to the transaction queue
Drop invalid transactions

1:

2:

3:

https://spec.polkadot.network/chap-state#algo-validate-transactions
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-state#defn-longest-chain
https://spec.polkadot.network/chap-runtime-api#sect-rte-validate-transaction
https://spec.polkadot.network/chap-state#algo-maintain-transaction-pool
https://spec.polkadot.network/chap-runtime-api#defn-valid-transaction

2.3.3. Inherents

Inherents are unsigned extrinsics inserted into a block by the block author and as a result are not stored in the transaction pool or gossiped across

the network. Instead, they are generated by the Polkadot Host by passing the required inherent data, as listed in Table 1, to the Runtime method

 (Section C.6.3.). Then the returned extrinsics should be included in the current block as explained in Build-

Block.

Table 1. Inherent Data

Identifier Value Type Description

timstap0 Unsigned 64-bit integer Unix epoch time (Definition 171)

babeslot Unsigned 64-bit integer The babe slot (DEPRECATED) (Definition 50)

parachn0 Parachain inherent data (Definition 93) Parachain candidate inclusion (Section 8.2.2.)

Definition 15. Inherent Data

2.4. State Storage Trie
For storing the state of the system, Polkadot Host implements a hash table storage where the keys are used to access each data entry. There is no

assumption either on the size of the key nor on the size of the data stored under them, besides the fact that they are byte arrays with specific upper

limits on their length. The limit is imposed by the encoding algorithms to store the key and the value in the storage trie (Section A.2.2.1.).

2.4.1. Accessing System Storage

The Polkadot Host implements various functions to facilitate access to the system storage for the Runtime (Section 2.6.1.). Here we formalize the

access to the storage when it is being directly accessed by the Polkadot Host (in contrast to Polkadot runtime).

Definition 16. Stored Value

2.4.2. General Structure

In order to ensure the integrity of the state of the system, the stored data needs to be re-arranged and hashed in a radix tree, which hereafter we

refer to as the State Trie or just Trie. This rearrangement is necessary to be able to compute the Merkle hash of the whole or part of the state

storage, consistently and efficiently at any given time.

INFO

This has not been defined yet.

BlockBuilder_inherent_extrinsics

Inherent-Data is a hashtable (Definition 182), an array of key-value pairs consisting of the inherent 8-byte identifier and its value,

representing the totality of inherent extrinsics included in each block. The entries of this hash table which are listed in Table 1 are collected or

generated by the Polkadot Host and then handed to the Runtime for inclusion (Build-Block).

The function retrieves the value stored under a specific key in the state storage and is formally defined as:

where and are respectively the set of all keys and values stored in the state storage. can be an empty value.

StoredValue

StoredValue: K → V

k → ​{v if (k, v) exists in state storage
ϕ otherwise

K ⊂ B V ⊂ B V

https://spec.polkadot.network/chap-state#tabl-inherent-data
https://spec.polkadot.network/chap-runtime-api#defn-rt-builder-inherent-extrinsics
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/id-cryptography-encoding#sect-sc-length-and-compact-encoding
https://spec.polkadot.network/chap-state#sect-entrypoints-into-runtime
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-state#tabl-inherent-data
https://spec.polkadot.network/sect-block-production#algo-build-block

The trie is used to compute the Merkle root (Section 2.4.4.) of the state, (Definition 10), whose purpose is to authenticate the validity of the state

database. Thus, the Polkadot Host follows a rigorous encoding algorithm to compute the values stored in the trie nodes to ensure that the computed

Merkle hash, , matches across the Polkadot Host implementations.

The trie is a radix-16 tree (Definition 17). Each key value identifies a unique node in the tree. However, a node in a tree might or might not be

associated with a key in the storage.

Definition 17. Radix-r Tree

When traversing the trie to a specific node, its key can be reconstructed by concatenating the subsequences of the keys which are stored either

explicitly in the nodes on the path or implicitly in their position as a child of their parent.

To identify the node corresponding to a key value, , first, we need to encode in a way consistent with the trie structure. Because each node in the

trie has at most 16 children, we represent the key as a sequence of 4-bit nibbles:

Definition 18. Key Encode

By looking at as a sequence of nibbles, one can walk the radix tree to reach the node identifying the storage value of .

2.4.3. Trie Structure

In this subsection, we specify the structure of the nodes in the trie as well as the trie structure:

Definition 19. Set of Nodes

Definition 20. State Trie

H ​r

H ​r

A Radix-r tree is a variant of a trie in which:

Every node has at most children where for some ;

Each node that is the only child of a parent, which does not represent a valid key is merged with its parent.

As a result, in a radix tree, any path whose interior vertices all have only one child and does not represent a valid key in the data set, is

compressed into a single edge. This improves space efficiency when the key space is sparse.

r r = 2x x

k k

For the purpose of labeling the branches of the trie, the key is encoded to using functions:

such that:

where is the set of all nibbles of 4-bit arrays and and are 4-bit nibbles, which are the big endian representations of :

where is the remainder and is the integer division operators.

k k ​enc KeyEncode

k ​ =enc k ​, … , k =(enc ​1 enc ​2n) KeyEncode k()

KeyEncode : B → Nibbles4

k ⟼ k ​, … , k ​(enc ​1 enc ​2n)

b ​, … , b ​ ⟼(1 n) b ​, b ​, b ​, b ​, … , b ​, b ​(1
1

1
2

2
1

2
2

n
1

n
2)

Nibble4 b ​i
1 b ​i

2 b ​i

k ​ =enc ​i b ​, b ​ =(i
1

i
2) b ​ ÷ 16, b ​mod16(i i)

mod ÷

k ​enc k

We refer to the set of the nodes of Polkadot state trie by . By to refer to an individual node in the trie.N N ∈ N

The state trie is a radix-16 tree (Definition 17). Each node in the trie is identified with a unique key such that:

 is the shared prefix of the key of all the descendants of in the trie.

kN

k ​N N

https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-radix-tree
https://spec.polkadot.network/chap-state#defn-radix-tree

Definition 21. Branch

For each node, part of is built while the trie is traversed from the root to and another part of is stored in (Definition 22).

Definition 22. Aggregated Prefix Key

Part of is explicitly stored in ’s ancestors. Additionally, for each ancestor, a single nibble is implicitly derived while traversing from the

ancestor to its child included in the traversal path using the function (Definition 23).

Definition 23. Index

Algorithm 3. Aggregate-Key

and at least one of the following statements holds:

 corresponds to an existing entry in the State Storage.

 has more than one child.

Conversely, if is an entry in the state trie then there is a node such that .

k ​, v(N)

N

k, v() N ∈ N k ​ =N k

A branch node is a node which has one child or more. A branch node can have at most 16 children. A leaf node is a

childless node. Accordingly:

N ​ ∈b N ​b N ​ ∈l N ​l

N ​ =b N ​ ∈ N ∣N ​ is a branch node{ b b }

N ​ =l N ​ ∈ N ∣N ​ is a leaf node{ l l }

k ​N N k ​N N

For any , its key is divided into an aggregated prefix key, , aggregated by Aggregate-Key and a partial key, of length

 in nibbles such that:

where is a prefix subsequence of ; is the length of in nibbles and so we have:

N ∈ N k ​N pk ​N
Agr pk ​N

0 ≤ l ​pk ​N

pk ​ =N k ​, … , k ​(enc ​i enc ​i+l ​pk ​N
)

pk ​N
Agr k ​N i pk ​N

Agr

KeyEncode k ​ =(N) pk ​∣∣pk ​ =N
Agr

N k ​, … , k ​, k ​, k ​(enc ​1 enc ​i−1 enc ​i enc ​i+l ​pk ​N

)

pk ​N
Agr

N

Index ​N

For and child of , we define function as:

such that

N ∈ N ​b N ​c N Index ​N

Index ​ :N {N ​ ∈C cc(N) ∣ N ​ is a child of N} →c Nibbles ​1
4

N ​ →c i

k ​ =N ​c
k ​∣ i∣ pk ​N ∣ ∣ N ​c

Algorithm Aggregate-Key

Require: TrieRoot

for all do

end for

return

P ​ =N : (= N , … ,N ​ =1 j N)
1: pk ​ ←N

Agr
ϕ

2: i ← 1
3: N ​ ∈i P ​N

4: pk ​ ←N
Agr pk ​∣∣pk ​∣∣Index ​(N ​)N

Agr
N ​i N ​i i+1

5:

6: pk ​ ←N
Agr pk ​∣∣pk ​N

Agr
N

7: pk ​N
Agr

A

https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/chap-state#defn-index-function
https://spec.polkadot.network/chap-state#algo-aggregate-key

Definition 24. Node Value

Definition 25. Node Header

2.4.4. Merkle Proof

To prove the consistency of the state storage across the network and its modifications both efficiently and effectively, the trie implements a Merkle

tree structure. The hash value corresponding to each node needs to be computed rigorously to make the inter-implementation data integrity

possible.

The Merkle value of each node should depend on the Merkle value of all its children as well as on its corresponding data in the state storage. This

recursive dependency is encompassed into the subvalue part of the node value, which recursively depends on the Merkle value of its children.

Additionally, as Section 2.5.1. clarifies, the Merkle proof of each child trie must be updated first before the final Polkadot state root can be

calculated.

We use the auxiliary function introduced in Definition 26 to encode and decode the information stored in a branch node.

Assuming that is the path (Definition 2) from the trie root to node , Aggregate-Key rigorously demonstrates how to build while

traversing .

P ​N N pk ​N
Agr

P ​N

A node stores the node value, , which consists of the following concatenated data:

Formally noted as:

where

 is the node header from Definition 25

 is the partial key from Definition 22

 is hex encoding (Definition 189)

 is the node subvalue from Definition 27

N ∈ N v ​N

Node Header Partial Key Node Subvalue∣∣ ∣∣

v ​ =N Head ​ Enc ​ pk ​ sv ​N ∣∣ HE(N)∣∣ N

Head ​N

pk ​N

Enc ​HE

sv ​N

The node header, consisting of bytes, , specifies the node variant and the partial key length (Definition 22). Both pieces of

information can be represented in bits within a single byte, , where the amount of bits of the variant, , and the bits of the partial key length,

 varies.

If the value of is equal to the maximum possible value the bits can hold, such as 63 () in case of the variant, then the value of the

next 8 bits () are added the length. This process is repeated for every where . Any value smaller than the maximum

possible value of implies that the next value of should not be added to the length. The hashed subvalue for variants and is

described in Definition 28.

Formally, the length of the partial key, , is defined as:

as long as , and , where is the maximum possible value that can hold.

≥ 1 N ​ …N ​1 n

N ​1 v

p ​l

v = ​ ​ ​ ​

⎩
⎨
⎧ 01

10
11

001
0001

00000000
00000001

Leaf
Branch Node with k ∈ KN /
Branch Node with k ∈ KN

Leaf containing a hashed subvalue
Branch containing a hashed subvalue

Empty
Reserved for compact encoding

p ​ = 2l
6

p ​ = 2l
6

p ​ = 2l
6

p ​ = 2l
5

p ​ = 2l
4

p ​ = 0l

p ​l 2 −6 1 01
N ​2 N ​n N ​ =n 2 −8 1

N ​n N ​n+1 001 0001

pk ​N
l

pk ​ =N
l p ​ +l N ​ +n N ​ +n+x … + Nn+x+y

p ​ =l m N ​ =n+x 2 −8 1 N ​ <n+x+y 2 −8 1 m p ​l

https://spec.polkadot.network/chap-state#sect-child-trie-structure
https://spec.polkadot.network/chap-state#defn-children-bitmap
https://spec.polkadot.network/chap-state#defn-path-graph
https://spec.polkadot.network/chap-state#algo-aggregate-key
https://spec.polkadot.network/chap-state#defn-node-header
https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/id-cryptography-encoding#defn-hex-encoding
https://spec.polkadot.network/chap-state#defn-node-subvalue
https://spec.polkadot.network/chap-state#defn-node-key
https://spec.polkadot.network/chap-state#defn-hashed-subvalue

Definition 26. Children Bitmap

Definition 27. Subvalue

Definition 28. Hashed Subvalue

Definition 29. Merkle Value

Suppose and is a child of . We define bit if and only if has a child with index , therefore we define

ChildrenBitmap functions as follows:

where

N ​,N ​ ∈b c N N ​c N ​b b ​ :=i 1 N ​b i

ChildrenBitmap:

N ​ →b B ​2

N ​ →b b ​, … , b , b ​, … , b ​ ​(15 8 7 0)2

b ​ =i ​ ​{1
0

∃N ​ ∈ N : k ​ = k ​ i pk ​c N ​c N ​b
∣∣ ∣∣ N ​c

otherwise

For a given node , the subvalue of , formally referred to as , is determined as follows:

where the first variant is a leaf node and the second variant is a branch node.

 with are the children nodes of the branch node .

 is defined in Section A.2.2..

, where can be empty, is defined in Definition 16.

 is defined in Definition 29.

 is defined in Definition 26.

The trie deviates from a traditional Merkle tree in that the node value (Definition 24), , is presented instead of its hash if it occupies less

space than its hash.

N N sv ​N

sv ​ =N ​{ StoredValue ​SC

Enc ​ ChildrenBitmap N StoredValue ​ Enc ​ H N ​ , … , Enc ​ H N ​SC(()∣∣ SC∣∣ SC((C ​1)) SC((C ​n
)))

StoredValue ​ =SC ​ ​{Enc ​ StoredValue k ​SC((N))
ϕ

if StoredValue k ​ = v(N)
if StoredValue k ​ = ϕ(N)

N ​ …N ​C ​1 C ​n
n ≤ 16 N

Enc ​SC

StoredValue v

H

ChildrenBitmap N()

v ​N

To increase performance, a Merkle proof can be generated by inserting the hash of a value into the trie rather than the value itself (which can

be quite large). If Merkle proof computation with node hashing is explicitly executed via the Host API (Section B.2.8.2.), then any value larger

than 32 bytes is hashed, resulting in that hash being used as the subvalue (Definition 27) under the corresponding key. The node header must

specify the variant and respectively for leaves containing a hash as their subvalue and for branches containing a hash as their

subvalue (Definition 25).

001 0001

For a given node , the Merkle value of , denoted by is defined as follows:N N H N()

H : B → U ​B ​i→0
32

32

H N :() ​ ​{ v ​N

Blake2b v ​(n)
v ​ < 32 and N = R∣∣ N ∣∣ 
v ​ ≥ 32 or N = R∣∣ N ∣∣

https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-state#defn-stored-value
https://spec.polkadot.network/chap-state#defn-merkle-value
https://spec.polkadot.network/chap-state#defn-children-bitmap
https://spec.polkadot.network/chap-state#defn-node-value
https://spec.polkadot.network/chap-host-api#sect-ext-storage-root-version-2
https://spec.polkadot.network/chap-state#defn-node-subvalue
https://spec.polkadot.network/chap-state#defn-node-header

2.4.5. Managing Multiple Variants of State

Unless a node is committed to only updating its state according to the finalized block (Definition 85), it is inevitable for the node to store multiple

variants of the state (one for each block). This is, for example, necessary for nodes participating in the block production and finalization.

While the state trie structure (Section 2.4.3.) facilitates and optimizes storing and switching between multiple variants of the state storage, the

Polkadot Host does not specify how a node is required to accomplish this task. Instead, the Polkadot Host is required to implement

(Definition 30):

Definition 30. Set State At Block

2.5. Child Storage
As clarified in Section 2.4., the Polkadot state storage implements a hash table for inserting and reading key-value entries. The child storage works

the same way but is stored in a separate and isolated environment. Entries in the child storage are not directly accessible via querying the main state

storage.

The Polkadot Host supports as many child storages as required by Runtime and identifies each separate child storage by its unique identifying key.

Child storages are usually used in situations where Runtime deals with multiple instances of a certain type of objects such as Parachains or Smart

Contracts. In such cases, the execution of the Runtime entrypoint might result in generating repeated keys across multiple instances of certain

objects. Even with repeated keys, all such instances of key-value pairs must be able to be stored within the Polkadot state.

In these situations, the child storage can be used to provide the isolation necessary to prevent any undesired interference between the state of

separated instances. The Polkadot Host makes no assumptions about how child storages are used, but provides the functionality for it via the Host

API (Section B.3.).

2.5.1. Child Tries

The child trie specification is the same as the one described in Section 2.4.3.. Child tries have their own isolated environment. Nonetheless, the main

Polkadot state trie depends on them by storing a node () which corresponds to an individual child trie. Here, is the child storage key

associated to the child trie, and is the Merkle value of its corresponding child trie computed according to the procedure described in Section

2.4.4..

The Polkadot Host API (Section B.3.) allows the Runtime to provide the key in order to identify the child trie, followed by a second key in order

to identify the value within that child trie. Every time a child trie is modified, the Merkle proof of the child trie stored in the Polkadot state must

be updated first. After that, the final Merkle proof of the Polkadot state can be computed. This mechanism provides a proof of the full Polkadot state

including all its child states.

2.6. Runtime Interactions
Like any transaction-based transition system, Polkadot’s state is changed by executing an ordered set of instructions. These instructions are known

as extrinsics. In Polkadot, the execution logic of the state transition function is encapsulated in a Runtime (Definition 1). For easy upgradability, this

Runtime is presented as a Wasm blob. Nonetheless, the Polkadot Host needs to be in constant interaction with the Runtime (Section 2.6.1.).

In Section 2.3., we specify the procedure of the process where the extrinsics are submitted, pre-processed, and validated by Runtime and queued to

be applied to the current state.

Where is the node value of (Definition 24) and is the root of the trie. The Merkle hash of the trie is defined to be .v ​N N R H R()

Set-State-At

The function:

in which is a block in the block tree (Definition 4), sets the content of state storage equal to the resulting state of executing all extrinsics

contained in the branch of the block tree from genesis till block B including those recorded in Block .

For the definition of the state storage see Section 2.4..

Set-State-At B()

B

B

K ​,VN N K ​N

V ​N

K ​N

V ​N

https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/chap-state#sect-state-storage-trie-structure
https://spec.polkadot.network/chap-state#defn-set-state-at
https://spec.polkadot.network/chap-state#sect-state-storage
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-state#sect-state-storage-trie-structure
https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/chap-state#sect-entrypoints-into-runtime
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/chap-state#defn-node-value
https://spec.polkadot.network/chap-state#defn-block-tree
https://spec.polkadot.network/chap-state#sect-state-storage

To make state replication feasible, Polkadot journals and batches a series of its extrinsics together into a structure known as a block, before

propagating them to other nodes, similar to most other prominent distributed ledger systems. The specification of the Polkadot block as well as the

process of verifying its validity, are both explained in Section 2.2..

2.6.1. Interacting with the Runtime

The Runtime (Definition 1) is the code implementing the logic of the chain. This code is decoupled from the Polkadot Host to make the logic of the

chain easily upgradable without the need to upgrade the Polkadot Host itself. The general procedure to interact with the Runtime is described by

Interact-With-Runtime.

Algorithm 4. Interact With Runtime

In this section, we describe the details upon which the Polkadot Host is interacting with the Runtime. In particular, and

 procedures called by Interact-With-Runtime are explained in Definition 32 and Definition 30 respectively. is the

Runtime code loaded from , as described in Definition 31, and is the Polkadot Host API, as described in Definition 194.

2.6.2. Loading the Runtime Code

The Polkadot Host expects to receive the code for the Runtime of the chain as a compiled WebAssembly (Wasm) Blob. The current runtime is stored

in the state database under the key represented as a byte array:

which is the ASCII byte representation of the string :code (Section A.3.3.). As a result of storing the Runtime as part of the state, the Runtime code

itself becomes state sensitive and calls to Runtime can change the Runtime code itself. Therefore the Polkadot Host needs to always make sure to

provide the Runtime corresponding to the state in which the entry point has been called. Accordingly, we define (Definition 31).

The initial Runtime code of the chain is provided as part of the genesis state (Section A.3.3.) and subsequent calls to the Runtime have the ability to,

in turn, upgrade the Runtime by replacing this Wasm blob with the help of the storage API (Section B.2.). Therefore, the executor must always load

the latest Runtime from storage - or preferably detect Runtime upgrades (Definition 11) - either based on the parent block when importing blocks or

the best/highest block when creating new blocks.

Definition 31. Runtime Code at State

The WASM blobs may be compressed using zstd. In such cases, there is an 8-byte magic identifier at the head of the blob, indicating that it should

be decompressed with zstd compression. The magic identifier prefix ZSTD_PREFIX = [82, 188, 83, 118, 70, 219, 142, 5] is different from

the WASM magic bytes. The decompression has to be applied on the blob excluding the ZSTD-PREFIX and has a Bomb Limit of

CODE_BLOB_BOMB_LIMIT = 50 * 1024 * 1024 to mitigate compression bomb attacks.

2.6.3. Code Executor

The Polkadot Host executes the calls of Runtime entrypoints inside a Wasm Virtual Machine (VM), which in turn provides the Runtime with access to

the Polkadot Host API. This part of the Polkadot Host is referred to as the Executor.

Algorithm Interact-With-Runtime

Require:
 Set-State-At()

Call-Runtime-Entrypoint()

where

 is the runtime entry point call.

 is the block hash indicating the state at the end of .

 are arguments to be passed to the runtime entrypoint.

F ,H ​(B), (A ​, … ,A ​)b 1 n

1: S ​ ←B H ​(B)b

2: A ← Enc ​((A ​, … ,A ​))SC 1 n

3: R ​, RE ​,F ,A,A ​B B len

F

H ​ Bb() B

A ​, … ,A ​1 n

Set-State-At
Call-Runtime-Entrypoint R ​B

S ​B RE ​B

b = 3A,63,6F,64,65

R ​B

By , we refer to the Runtime code stored in the state storage at the end of the execution of block .R ​B B

https://spec.polkadot.network/chap-state#sect-state-replication
https://spec.polkadot.network/chap-state#defn-state-machine
https://spec.polkadot.network/chap-state#algo-runtime-interaction
https://spec.polkadot.network/chap-state#algo-runtime-interaction
https://spec.polkadot.network/chap-state#defn-call-into-runtime
https://spec.polkadot.network/chap-state#defn-set-state-at
https://spec.polkadot.network/chap-state#defn-runtime-code-at-state
https://spec.polkadot.network/chap-host-api#defn-host-api-at-state
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-state#defn-runtime-code-at-state
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-host-api#sect-storage-api
https://spec.polkadot.network/chap-state#defn-digest
https://github.com/facebook/zstd
https://github.com/WebAssembly/design/blob/main/BinaryEncoding.md#high-level-structure

Definition 32 introduces the notation for calling the runtime entrypoint which is used whenever an algorithm of the Polkadot Host needs to access

the runtime.

It is acceptable behavior that the Runtime panics during execution of a function in order to indicate an error. The Polkadot Host must be able to

catch that panic and recover from it.

In this section, we specify the general setup for an Executor that calls into the Runtime. In Appendix C we specify the parameters and return values

for each Runtime entrypoint separately.

Definition 32. Call Runtime Entrypoint

2.6.3.1. Memory Management

The Polkadot Host is responsible for managing the WASM heap memory starting at the exported symbol as a part of implementing the allocator Host

API (Section B.10.) and the same allocator should be used for any other heap allocation to be used by the Polkadot Runtime.

The size of the provided WASM memory should be based on the value of the storage key (an unsigned 64-bit integer), where each page has a size

of 64KB. This memory should be made available to the Polkadot Runtime for import under the symbol name memory .

2.6.3.2. Sending Data to a Runtime Entrypoint

In general, all data exchanged between the Polkadot Host and the Runtime is encoded using the SCALE codec described in Section A.2.2.. Therefore

all runtime entrypoints have the following identical Wasm function signatures:

In each invocation of a Runtime entrypoints, the argument(s) which are supposed to be sent to the entrypoint, need to be SCALE encoded into a

byte array (Section A.2.2.) and copied into a section of Wasm shared memory managed by the shared allocator described in Section 2.6.3.1..

When the Wasm method, corresponding to the entrypoint, is invoked, two integers are passed as arguments. The first argument is set to the

memory address of the byte array in Wasm memory. The second argument sets the length of the encoded data stored in .

2.6.3.3. Receiving Data from a Runtime Entrypoint

The value which is returned from the invocation is an integer, representing two consecutive integers in which the least significant one indicates the

pointer to the offset of the result returned by the entrypoint encoded in SCALE codec in the memory buffer. The most significant one provides the

size of the blob.

2.6.3.4. Runtime Version Custom Section

For newer Runtimes, the Runtime version (Section C.4.1.) can be read directly from the Wasm custom section with the name runtime_version.
The content is a SCALE encoded structure as described in Section C.4.1..

Retrieving the Runtime version this way is preferred over calling the Core_version entrypoint since it involves significantly less overhead.

By

we refer to the task using the executor to invoke the while passing an argument to it and using the encoding described in Section

2.6.3.2..

Call-Runtime-Entrypoint R,RE, Runtime-Entrypoint,A,A ​n(≤)

A ​, … ,A ​1 n

(func $runtime_entrypoint (param $data i32) (param $len i32) (result i64))

B

B B

https://spec.polkadot.network/chap-state#defn-call-into-runtime
https://spec.polkadot.network/chap-runtime-api
https://spec.polkadot.network/chap-host-api#sect-allocator-api
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://webassembly.github.io/spec/core/appendix/custom
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-state#sect-runtime-send-args-to-runtime-enteries

3. Synchronization
Many applications that interact with the Polkadot network, to some extent, must be able to retrieve certain information about the network.

Depending on the utility, this includes validators that interact with Polkadot’s consensus and need access to the full state, either from the past or just

the most up-to-date state, or light clients that are only interested in the minimum information required in order to verify some claims about the state

of the network, such as the balance of a specific account. To allow implementations to quickly retrieve the required information, different types of

synchronization protocols are available, respectively Full, Fast, and Warp sync suited for different needs.

The associated network messages are specified in Section 4.8..

3.1. Warp Sync
Warp sync (Section 4.8.4.) only downloads the block headers where authority set changes occurred, so-called fragments (Definition 41), and by

verifying the GRANDPA justifications (Definition 45). This protocol allows nodes to arrive at the desired state much faster than fast sync.

3.2. Fast Sync
Fast sync works by downloading the block header history and validating the authority set changes (Section 3.3.1.) in order to arrive at a specific

(usually the most recent) header. After the desired header has been reached and verified, the state can be downloaded and imported (Section

4.8.3.). Once this process has been completed, the node can proceed with a full sync.

3.3. Full Sync
The full sync protocol is the "default" protocol that’s suited for many types of implementations, such as archive nodes (nodes that store everything),

validators that participate in Polkadots consensus and light clients that only verify claims about the state of the network. Full sync works by listening

to announced blocks (Section 4.8.1.) and requesting the blocks from the announcing peers or just the block headers in case of light clients.

The full sync protocol usually downloads the entire chain, but no such requirements must be met. If an implementation only wants the latest,

finalized state, it can combine it with protocols such as fast sync (Section 3.2.) and/or warp sync (Section 3.1.) to make synchronization as fast as

possible.

3.3.1. Consensus Authority Set

Because Polkadot is a proof-of-stake protocol, each of its consensus engines has its own set of nodes represented by known public keys, which

have the authority to influence the protocol in pre-defined ways explained in this Section. To verify the validity of each block, the Polkadot node

must track the current list of authorities (Definition 33) for that block.

Definition 33. Authority List

The authority list of block for consensus engine noted as is an array that contains the following pair of types for each of its

authorities :

 is the session public key (Definition 170) of authority . And is an unsigned 64-bit integer indicating the authority weight. The value of

 is part of the Polkadot state. The value for is set in the genesis state (Section A.3.3.) and can be retrieved using a

runtime entrypoint corresponding to consensus engine .

The authorities and their corresponding weights can be retrieved from the Runtime (Section C.10.1.).

B C Auth ​ BC()
A ∈ Auth ​ BC()

pk ​,w ​(A A)

pk ​A A w ​A

Auth ​ BC() Auth ​ B ​C(0)
C

INFO

In Polkadot, the authorities are unweighted, i.e., the weights for all authorities are set to 1. The proportionality in terms of stakes is managed by

the NPOS (Nominated Proof-of-Stake) algorithm in Polkadot. Once validators are elected for an era using the NPOS algorithm, they are

considered equal in the BABE and GRANDPA consensus algorithms.

https://spec.polkadot.network/chap-networking#sect-network-messages
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/chap-networking#defn-grandpa-justifications-compact
https://spec.polkadot.network/chap-sync#sect-authority-set
https://spec.polkadot.network/chap-networking#sect-msg-state-request
https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/chap-sync#sect-sync-fast
https://spec.polkadot.network/chap-sync#sect-sync-warp
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/id-cryptography-encoding#defn-session-key
https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://spec.polkadot.network/chap-runtime-api#sect-rte-grandpa-auth
https://wiki.polkadot.network/docs/learn-phragmen

3.3.2. Runtime-to-Consensus Engine Message

The authority list (Definition 33) is part of the Polkadot state, and the Runtime has the authority to update this list in the course of any state

transitions. The Runtime informs the corresponding consensus engine about the changes in the authority set by adding the appropriate consensus

message in the form of a digest item (Definition 11) to the block header of block which caused the transition in the authority set.

The Polkadot Host must inspect the digest header of each block and delegate consensus messages to their consensus engines. The BABE and

GRANDPA consensus engine must react based on the type of consensus messages it receives. The active GRANDPA authorities can only vote for

blocks that occurred after the finalized block in which they were selected. Any votes for blocks before they came into effect would get rejected.

3.4. Importing and Validating Block
Block validation is the process by which a node asserts that a block is fit to be added to the blockchain. This means that the block is consistent with

the current state of the system and transitions to a new valid state.

New blocks can be received by the Polkadot Host via other peers (Section 4.8.2.) or from the Host’s own consensus engine (Chapter 5). Both the

Runtime and the Polkadot Host then need to work together to assure block validity. A block is deemed valid if the block author had authorship rights

for the slot in which the block was produced as well as if the transactions in the block constitute a valid transition of states. The former criterion is

validated by the Polkadot Host according to the block production consensus protocol. The latter can be verified by the Polkadot Host invoking entry

into the Runtime as (Section C.4.2.) as a part of the validation process. Any state changes created by this function on successful execution are

persisted.

The Polkadot Host implements Import-and-Validate-Block to assure the validity of the block.

Algorithm 5. Import-and-Validate-Block

B

Algorithm Import-and-Validate-Block

Require:
Set-Storage-State-At()
if then

Verify-Block-Justification()
if then

Mark-as-Final()
end if

end if
if then

return
end if
Verify-Authorship-Right()

 Remove-Seal()
 Call-Runtime-Entry()
 Add-Seal()

if True then
Persist-State()

end if

where

 removes the Seal digest from the block (Definition 11) before submitting it to the Runtime.

 adds the Seal digest back to the block (Definition 11) for later propagation.

 implies the persistence of any state changes created by (Section C.4.2.) on successful execution.

 is the pruned block tree (Definition 4).

 is part of the block production consensus protocol and is described in Verify-Authorship-Right.

Finalized block and finality are defined in Chapter 6.

B, Just(B)
1: P (B)
2: Just(B) = ∅
3: B, Just(B)
4: B is Finalized and P (B) is not Finalized
5: P (B)
6:

7:

8: H ​(B) ∈p / PBT

9:

10:

11: Head(B)
12: B ← B

13: R ← Core_execute_block,B
14: B ← B

15: R =
16:

17:

Remove-Seal

Add-Seal

Persist-State Core_execute_block

PBT

Verify-Authorship-Right

https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/sect-block-production
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-sync#algo-import-and-validate-block
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-state#defn-block-tree
https://spec.polkadot.network/sect-block-production#algo-verify-authorship-right
https://spec.polkadot.network/sect-finality

4. Networking

4.1. Introduction
The Polkadot network is decentralized and does not rely on any central authority or entity for achieving its fullest potential of provided functionality.

The networking protocol is based on a family of open protocols, including protocol implemented libp2p e.g. the distributed Kademlia hash table

which is used for peer discovery.

This chapter walks through the behavior of the networking implementation of the Polkadot Host and defines the network messages. The

implementation details of the libp2p protocols used are specified in external sources as described in Section 4.2.

4.2. External Documentation
Complete specification of the Polkadot networking protocol relies on the following external protocols:

libp2p - libp2p is a modular peer-to-peer networking stack composed of many modules and different parts. includes the multiplexing protocols

and .

libp2p addressing - The Polkadot Host uses the libp2p addressing system to identify and connect to peers.

Kademlia - Kademlia is a distributed hash table for decentralized peer-to-peer networks. The Polkadot Host uses Kademlia for peer discovery.

Noise - The Noise protocol is a framework for building cryptographic protocols. The Polkadot Host uses Noise to establish the encryption layer

to remote peers.

yamux - yamux is a multiplexing protocol developed by HashiCorp. It is the de-facto standard for the Polkadot Host. Section 4.7. describes the

subprotocol in more detail.

Protocol Buffers - Protocol Buffers is a language-neutral, platform-neutral mechanism for serializing structured data and is developed by

Google. The Polkadot Host uses Protocol Buffers to serialize specific messages, as clarified in Section 4.8..

4.3. Node Identities
Each Polkadot Host node maintains an ED25519 key pair which is used to identify the node. The public key is shared with the rest of the network

allowing the nodes to establish secure communication channels.

Each node must have its own unique ED25519 key pair. If two or more nodes use the same key, the network will interpret those nodes as a single

node, which will result in unspecified behavior. Furthermore, the node’s PeerId as defined in Definition 34 is derived from its public key. PeerId is

used to identify each node when they are discovered in the course of the discovery mechanism described in Section 4.4..

Definition 34. PeerId

INFO

This chapter in its current form is incomplete and considered work in progress. Authors appreciate receiving request for clarification or any

reports regarding deviation from the current Polkadot network protocol. This can be done through filing an issue in Polkadot Specification

repository.

The Polkadot node’s PeerId, formally referred to as , is derived from the ED25519 public key and is structured based on the libp2p

specification, but does not fully conform to the specification. Specifically, it does not support CID and the only supported key type is ED25519.

The byte representation of the PeerId is always of the following bytes in this exact order:

P ​id

b ​ =0 0

b ​ =1 36

b ​ =2 8

https://spec.polkadot.network/chap-networking#sect-networking-external-docs
https://github.com/libp2p/specs
https://docs.libp2p.io/concepts/addressing/
https://en.wikipedia.org/wiki/Kademlia
https://noiseprotocol.org/
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://spec.polkadot.network/chap-networking#sect-network-messages
https://spec.polkadot.network/chap-networking#defn-peer-id
https://spec.polkadot.network/chap-networking#sect-discovery-mechanism
https://github.com/w3f/polkadot-spec
https://docs.libp2p.io/concepts/peer-id/
https://github.com/multiformats/cid

4.4. Discovery mechanism
The Polkadot Host uses various mechanisms to find peers within the network, to establish and maintain a list of peers and to share that list with

other peers from the network as follows:

Bootstrap nodes are hard-coded node identities and addresses provided by the genesis state (Section A.3.3.).

mDNS is a protocol that performs a broadcast to the local network. Nodes that might be listening can respond to the broadcast. The libp2p

mDNS specification defines this process in more detail. This protocol is an optional implementation detail for Polkadot Host implementers and is

not required to participate in the Polkadot network.

Kademlia requests invoking Kademlia requests, where nodes respond with their list of available peers. Kademlia requests are performed on a

specific substream as described in Section 4.7..

4.5. Connection establishment
Polkadot nodes connect to peers by establishing a TCP connection. Once established, the node initiates a handshake with the remote peers on the

encryption layer. An additional layer on top of the encryption layer, known as the multiplexing layer, allows a connection to be split into substreams,

as described by the yamux specification, either by the local or remote node.

The Polkadot node supports two types of substream protocols. Section 4.7. describes the usage of each type in more detail:

Request-Response substreams: After the protocol is negotiated by the multiplexing layer, the initiator sends a single message containing a

request. The responder then sends a response, after which the substream is then immediately closed. The requests and responses are prefixed

with their LEB128 encoded length.

Notification substreams. After the protocol is negotiated, the initiator sends a single handshake message. The responder can then either

accept the substream by sending its own handshake or reject it by closing the substream. After the substream has been accepted, the initiator

can send an unbound number of individual messages. The responder keeps its sending side of the substream open, despite not sending

anything anymore, and can later close it in order to signal to the initiator that it no longer wishes to communicate.

Handshakes and messages are prefixed with their LEB128 encoded lengths. A handshake can be empty, in which case the length prefix would

be 0.

Connections are established by using the following protocols:

/noise - a protocol that is announced when a connection to a peer is established.

/multistream/1.0.0 - a protocol that is announced when negotiating an encryption protocol or a substream.

/yamux/1.0.0 - a protocol used during yamux negotiation. See Section 4.7. for more information.

The Polkadot Host can establish a connection with any peer of which it knows the address. The Polkadot Host supports multiple networking

protocols:

where

 is the multihash prefix of value (implying no hashing is used).

 the length of the PeerId (remaining bytes).

 and are a protobuf encoded field-value pair indicating the used key type (field of value implies ED25519).

, and are a protobuf encoded field-value pair where indicates the length of the public key followed by the the raw ED25519

public key itself, which varies for each Polkadot Host and is always 32 bytes (field contains the public key, which has a field value length

prefix).

b ​ =3 1

b ​ =4 18

b ​ =5 32

b ​ =6..37 …

b ​0 0

b ​1

b ​2 b ​3 1 1

b ​4 b ​5 b ​6..37 b ​5

2

https://spec.polkadot.network/id-cryptography-encoding#section-genesis
https://github.com/libp2p/specs/blob/master/discovery/mdns.md
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128
https://spec.polkadot.network/chap-networking#sect-protocols-substreams
https://github.com/multiformats/multihash#multihash
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md#keys

TCP/IP with addresses in the form of /ip4/1.2.3.4/tcp/30333 to establish a TCP connection and negotiate encryption and a multiplexing

layer.

WebSocket with addresses in the form of /ip4/1.2.3.4/tcp/30333/ws to establish a TCP connection and negotiate the WebSocket

protocol within the connection. Additionally, encryption and multiplexing layer is negotiated within the WebSocket connection.

DNS addresses in form of /dns/example.com/tcp/30333 and /dns/example.com/tcp/30333/ws .

The addressing system is described in the libp2p addressing specification. After a base-layer protocol is established, the Polkadot Host will apply

the Noise protocol to establish the encryption layer as described in Section 4.6..

4.6. Encryption Layer
Polkadot protocol uses the libp2p Noise framework to build an encryption protocol. The Noise protocol is a framework for building encryption

protocols. libp2p utilizes that protocol for establishing encrypted communication channels. Refer to the libp2p Secure Channel Handshake

specification for a detailed description.

Polkadot nodes use the XX handshake pattern to establish a connection between peers. The three following steps are required to complete the

handshake process:

1. The initiator generates a keypair and sends the public key to the responder. The Noise specification and the libp2p PeerId specification describe

keypairs in more detail.

2. The responder generates its own key pair and sends its public key back to the initiator. After that, the responder derives a shared secret and

uses it to encrypt all further communication. The responder now sends its static Noise public key (which may change anytime and does not

need to be persisted on disk), its libp2p public key and a signature of the static Noise public key signed with the libp2p public key.

3. The initiator derives a shared secret and uses it to encrypt all further communication. It also sends its static Noise public key, libp2p public key

and signature to the responder.

After these three steps, both the initiator and responder derive a new shared secret using the static and session-defined Noise keys, which are used

to encrypt all further communication.

4.7. Protocols and Substreams
After the node establishes a connection with a peer, the use of multiplexing allows the Polkadot Host to open substreams. libp2p uses the yamux

protocol to manage substreams and to allow the negotiation of application-specific protocols, where each protocol serves a specific utility.

The Polkadot Host uses multiple substreams whose usage depends on a specific purpose. Each substream is either a Request-Response substream

or a Notification substream, as described in Section 4.5..

/ipfs/ping/1.0.0 - Open a standardized substream libp2p to a peer and initialize a ping to verify if a connection is still alive. If the peer does

not respond, the connection is dropped. This is a Request-Response substream.

Further specification and reference implementation are available in the libp2p documentation.

/ipfs/id/1.0.0 - Open a standardized libp2p substream to a peer to ask for information about that peer. This is a Request-Response

substream, but the initiator does not send any message to the responder and only waits for the response.

Further specification and reference implementation are available in the libp2p documentation.

/dot/kad - Open a standardized substream for Kademlia FIND_NODE requests. This is a Request-Response substream, as defined by the

libp2p standard.

Further specification and reference implementation are available on Wikipedia respectively the golang Github repository.

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/light/2 - a request and response protocol that allows a

light client to request information about the state. This is a Request-Response substream.

INFO

The prefixes on those substreams are known as protocol identifiers and are used to segregate communications to specific networks. This

prevents any interference with other networks. dot is used exclusively for Polkadot. Kusama, for example, uses the protocol identifier ksmcc3 .

https://docs.libp2p.io/concepts/addressing/
https://spec.polkadot.network/chap-networking#sect-encryption-layer
https://github.com/libp2p/specs/tree/master/noise
https://noiseexplorer.com/patterns/XX/
https://github.com/libp2p/specs/tree/master/noise
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://docs.libp2p.io/concepts/stream-multiplexing/#yamux
https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://docs.libp2p.io/concepts/protocols/#ping
https://docs.libp2p.io/concepts/protocols/#identify
https://en.wikipedia.org/wiki/Kademlia
https://github.com/libp2p/go-libp2p-kad-dht

The messages are specified in Section 7.4..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/block-announces/1 - a substream/notification protocol

which sends blocks to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.1..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/sync/2 - a request and response protocol that allows the

Polkadot Host to request information about blocks. This is a Request-Response substream.

The messages are specified in Section 4.8.2..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/sync/warp - a request and response protocol that allows

the Polkadot Host to perform a warp sync request. This is a Request-Response substream.

The messages are specified in Section 4.8.4..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/transactions/1 - a substream/notification protocol which

sends transactions to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.5..

/91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3/grandpa/1 - a substream/notification protocol that sends

GRANDPA votes to connected peers. This is a Notification substream.

The messages are specified in Section 4.8.6..

4.8. Network Messages
The Polkadot Host must actively communicate with the network in order to participate in the validation process or act as a full node.

INFO

For backwards compatibility reasons, /dot/light/2 is also a valid substream for those messages.

INFO

For backwards compatibility reasons, /dot/block-announces/1 is also a valid substream for those messages.

INFO

For backwards compatibility reasons, /dot/sync/2 is also a valid substream for those messages.

INFO

For backwards compatibility reasons, /dot/sync/warp is also a valid substream for those messages.

INFO

For backwards compatibility reasons, /dot/transactions/1 is also a valid substream for those messages.

INFO

For backwards compatibility reasons, /paritytech/grandpa/1 is also a valid substream for those messages.

INFO

The Polkadot network originally only used SCALE encoding for all message formats. Meanwhile, Protobuf has been adopted for certain

messages. The encoding of each listed message is always SCALE encoded unless Protobuf is explicitly mentioned. Encoding and message

formats are subject to change.

https://spec.polkadot.network/sect-lightclient#sect-light-msg
https://spec.polkadot.network/chap-networking#sect-msg-block-announce
https://spec.polkadot.network/chap-networking#sect-msg-block-request
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-networking#sect-msg-grandpa

4.8.1. Announcing blocks

When the node creates or receives a new block, it must be announced to the network. Other nodes within the network will track this announcement

and can request information about this block. The mechanism for tracking announcements and requesting the required data is implementation-

specific.

Block announcements, requests and responses are sent over the substream as described in Definition 35.

Definition 35. Block Announce Handshake

Definition 36. Block Announce

4.8.2. Requesting Blocks

Block requests can be used to retrieve a range of blocks from peers. Those messages are sent over the /dot/sync/2 substream.

Definition 37. Block Request

The BlockAnnounceHandshake initializes a substream to a remote peer. Once established, all BlockAnounce messages (Definition 36)

created by the node are sent to the /dot/block-announces/1 substream.

The BlockAnnounceHandshake is a structure of the following format:

where

BA ​ =h Enc ​ R,N ​,h ​,h ​SC(B B G)

R = ​ ​ ​⎩⎨
⎧1

2
4

The node is a full node
The node is a light client
The node is a validator

N ​ =B Best block number according to the node

h ​ =B Best block hash according to the node

h ​ =G Genesis block hash according to the node

The BlockAnnounce message is sent to the specified substream and indicates to remote peers that the node has either created or received a

new block.

The message is a structure of the following format:

where

BA = Enc ​ Head B , bSC(())

Head B =() Header of the announced block

b = ​ ​{0
1

Is not part of the best chain
Is the best block according to the node

The BlockRequest message is a Protobuf serialized structure of the following format:

Type Id Description Value

uint32 1 Bits of block data to request

oneof Start from this block

Direction 5 Sequence direction, interpreted as Id 0 (ascending) if missing.

B ​f

B ​s

https://spec.polkadot.network/chap-networking#defn-block-announce-handshake
https://spec.polkadot.network/chap-networking#defn-block-announce

Definition 38. Block Response

Type Id Description Value

uint32 6 Maximum amount (optional)

where

 indicates all the fields that should be included in the request. its big-endian encoded bitmask that applies to all desired fields with

bitwise OR operations. For example, the value to request Header and Justification is 0001 0001 (17).

Field Value

Header 0000 0001

Body 0000 0010

Justification 0001 0000

 is a Protobuf structure indicating a varying data type (enum) of the following values:

Type Id Description

bytes 2 The block hash

bytes 3 The block number

Direction is a Protobuf structure indicating the sequence direction of the requested blocks. The structure is a varying data type (enum) of

the following format:

Id Description

0 Enumerate in ascending order (from child to parent)

1 Enumerate in descending order (from parent to canonical child)

 is the number of blocks to be returned. An implementation defined maximum is used when unspecified.

B ​m

B ​f

B ​f

B ​s

B ​m

The BlockResponse message is received after sending a BlockRequest message to a peer. The message is a Protobuf serialized structure

of the following format:

Type Id Description

Repeated BlockData 1 Block data for the requested sequence

where BlockData is a Protobuf structure containing the requested blocks. Do note that the optional values are either present or absent

depending on the requested fields (bitmask value). The structure has the following format:

Type Id Description Value

bytes 1 Block header hash Definition 12

bytes 2 Block header (optional) Definition 10

repeated bytes 3 Block body (optional) Definition 13

bytes 4 Block receipt (optional)

https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body

4.8.3. Requesting States

The Polkadot Host can request the state in form of a key/value list at a specified block.

When receiving state entries from the state response messages (Definition 40), the node can verify the entries with the entry proof (id 1 in

KeyValueStorage) against the merkle root in the block header (of the block specified in Definition 39). Once the state response message claims that

all entries have been sent (id 3 in KeyValueStorage), the node can use all collected entry proofs and validate it against the merkle root to confirm

that claim.

See the the synchronization chapter for more information (Chapter 3).

Definition 39. State Request

Definition 40. State Response

Type Id Description Value

bytes 5 Block message queue (optional)

bytes 6 Justification (optional) Definition 74

bool 7 Indicates whether the justification is empty (i.e. should be ignored)

A state request is sent to a peer to request the state at a specified block. The message is a single 32-byte Blake2 hash which indicates the

block from which the sync should start.

Depending on what substream is used, he remote peer either sends back a state response (Definition 40) on the /dot/sync/2 substream or a

warp sync proof (Definition 41) on the /dot/sync/warp .

The state response is sent to the peer that initialized the state request (Definition 39) and contains a list of key/value entries with an

associated proof. This response is sent continuously until all key/value pairs have been submitted.

Type Id Description

repeated KeyValueStateEntry 1 State entries

bytes 2 State proof

where KeyValueStateEntry is of the following format:

Type Id Description

bytes 1 Root of the entry, empty if top level

repeated StateEntry 2 Collection of key/values

bool 3 Equal 'true' if there are no more keys to return.

and StateEntry:

Type Id Description

bytes 1 The key of the entry

https://spec.polkadot.network/chap-networking#defn-msg-state-response
https://spec.polkadot.network/chap-networking#defn-msg-state-request
https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#defn-msg-state-response
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/chap-networking#defn-msg-state-request

4.8.4. Warp Sync

The warp sync protocols allows nodes to retrieve blocks from remote peers where authority set changes occurred. This can be used to speed up

synchronization to the latest state.

See the the synchronization chapter for more information (Chapter 3).

Definition 41. Warp Sync Proof

4.8.5. Transactions

Transactions (Section 2.3.) are sent directly to peers with which the Polkadot Host has an open transaction substream (Definition 42). Polkadot Host

implementers should implement a mechanism that only sends a transaction once to each peer and avoids sending duplicates. Sending duplicate

transactions might result in undefined consequences such as being blocked for bad behavior by peers.

The mechanism for managing transactions is further described in Section Section 2.3..

Definition 42. Transaction Message

4.8.6. GRANDPA Messages

The exchange of GRANDPA messages is conducted on the substream. The process for the creation and distributing these messages is described in

Chapter 6. The underlying messages are specified in this section.

Definition 43. Grandpa Gossip Message

Type Id Description

bytes 2 The value of the entry

The warp sync proof message, , is sent to the peer that initialized the state request (Definition 39) on the /dot/sync/warp substream and

contains accumulated proof of multiple authority set changes (Section 3.3.2.). It’s a datastructure of the following format:

 is an array consisting of warp sync fragments of the following format:

where is the last block header containing a digest item (Definition 11) signaling an authority set change from which the next authority set

change can be fetched from. is the GRANDPA justification (Definition 74) and is a boolean that indicates whether the warp sync

has been completed.

P

P = f ​ …f ​,c(x y)

f ​ …f ​x y

f ​ = B ​, J Bx (h
r,stage())

B ​h

J Br,stage() c

The transactions message is the structure of how the transactions are sent over the network. It is represented by and is defined as

follows:

in which

Where each is a byte array and represents a separate extrinsic. The Polkadot Host is agnostic about the content of an extrinsic and treats it

as a blob of data.

Transactions are sent over the /dot/transactions/1 substream.

M ​T

M ​ =T Enc ​ C ​, … ,C ​SC(1 n)

C ​ =i Enc ​ E ​SC(i)

E ​i

https://spec.polkadot.network/chap-sync
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/chap-networking#defn-transactions-message
https://spec.polkadot.network/chap-state#sect-extrinsics
https://spec.polkadot.network/sect-finality
https://spec.polkadot.network/chap-networking#defn-msg-state-request
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-finality#defn-grandpa-justification

Definition 44. GRANDPA Vote Messages

Definition 45. GRANDPA Compact Justification Format

A GRANDPA gossip message, , is a varying datatype (Definition 178) which identifies the message type that is cast by a voter followed by

the message itself.

where

 is defined in Definition 44.

 is defined in Definition 46.

 is defined in Definition 47.

 is defined in Definition 48.

 is defined in Definition 49.

M

M = ​ ​ ​

⎩
⎨
⎧0

1
2
3
4

Vote message
Commit message
Neighbor message

Catch-up request message
Catch-up message

V ​m

C ​m

N ​m

R ​m

U ​m

V ​m

C ​m

N ​m

R ​m

U ​M

A GRANDPA vote message by voter , , is gossip to the network by voter with the following structure:

where

 is an unsigned 64-bit integer indicating the Grandpa round number (Definition 72).

 is an unsigned 64-bit integer indicating the authority Set Id (Definition 69).

 is a 512-bit byte array containing the signature of the authority (Definition 73).

 is a 256-bit byte array containing the ed25519 public key of the authority.

 is a 8-bit integer of value 0 if it’s a pre-vote sub-round, 1 if it’s a pre-commit sub-round or 2 if it’s a primary proposal message.

 is the GRANDPA vote for block (Definition 72).

This message is the sub-component of the GRANDPA gossip message (Definition 43) of type Id 0.

v M ​v
r,stage v

M ​ B =v
r,stage() Enc ​ r, id ​, SigMsgSC(V)

SigMsg = msg, Sig ​, v ​(v ​i

r,stage
id)

msg = Enc ​ stage,V ​ BSC(v
r,stage())

r

id ​V

Sig ​v ​i

r,stage

v ​id

stage

V ​ Bv
r,stage() B

The GRANDPA compact justification format is an optimized data structure to store a collection of pre-commits and their signatures to be

submitted as part of a commit message. Instead of storing an array of justifications, it uses the following format:

where

 is a 256-bit byte array containing the pre-commit vote of authority (Definition 72).

 is a 512-bit byte array containing the pre-commit signature of authority (Definition 73).

 is a 256-bit byte array containing the public key of authority .

J ​ =v ​0,…n

r,comp V ​, …V ​ , Sig ​, v ​ , … Sig ​, v ​({ v ​0

r,pc
v ​n

r,pc} {(v ​0

r,pc
id ​0) (vn

r,pc
id ​n
)})

V ​v ​i

r,pc v ​i

Sig ​v ​i

r,pc v ​i

v ​id ​n
v ​i

https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/chap-networking#defn-grandpa-vote-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-commit-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-neighbor-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-sign-round-vote
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-sign-round-vote

Definition 46. GRANDPA Commit Message

4.8.6.1. GRANDPA Neighbor Messages

Neighbor messages are sent to all connected peers but they are not repropagated on reception. A message should be send whenever the messages

values change and at least every 5 minutes. The sender should take the recipients state into account and avoid sending messages to peers that are

using a different voter sets or are in a different round. Messages received from a future voter set or round can be dropped and ignored.

Definition 47. GRANDPA Neighbor Message

4.8.6.2. GRANDPA Catch-up Messages

Whenever a Polkadot node detects that it is lagging behind the finality procedure, it needs to initiate a catch-up procedure. GRANDPA Neighbor

messages (Definition 47) reveal the round number for the last finalized GRANDPA round which the node’s peers have observed. This provides the

means to identify a discrepancy in the latest finalized round number observed among the peers. If such a discrepancy is observed, the node needs

to initiate the catch-up procedure explained in Section 6.6.1.).

In particular, this procedure involves sending a catch-up request and processing catch-up response messages.

Definition 48. Catch-Up Request Message

A GRANDPA commit message for block in round , , is a message broadcasted by voter to the network indicating that voter

has finalized block in round . It has the following structure:

where

 is an unsigned 64-bit integer indicating the round number (Definition 72).

 is the authority set Id (Definition 69).

 is a 256-bit array containing the GRANDPA vote for block (Definition 71).

 is the compacted GRANDPA justification containing observed pre-commit of authorities to (Definition 45).

This message is the sub-component of the GRANDPA gossip message (Definition 43) of type Id 1.

B r M ​ Bv
r,Fin() v v

B r

M ​ B =v
r,Fin() Enc r, id ​,V ​ B , J ​SC(V v

r() v ​0,…n

r,comp)

r

id ​V

V ​ Bv
r() B

J ​v ​0,…n

r,comp v ​0 v ​n

A GRANDPA Neighbor Message is defined as:

where

 is an unsigned 8-bit integer indicating the version of the neighbor message, currently 1.

 is an unsigned 64-bit integer indicating the round number (Definition 72).

 is an unsigned 64-bit integer indicating the authority Id (Definition 69).

 is an unsigned 32-bit integer indicating the block number of the last finalized block .

This message is the sub-component of the GRANDPA gossip message (Definition 43) of type Id 2.

M =neigh Enc ​ v, r, id ​,H ​ B ​SC(V i(last))

v

r

id ​V

H ​ B ​i(last) B ​last

A GRANDPA catch-up request message for round , , is a message sent from node to its voting peer node requesting the

latest status of a GRANDPA round of the authority set along with the justification of the status and has the following structure:

r M ​ id ​, ri,v
Cat−q(V) i v

r >′ r V ​id

M ​ =i,v
r,Cat−q Enc ​ r, id ​SC(V)

https://spec.polkadot.network/chap-networking#defn-grandpa-neighbor-msg
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-vote
https://spec.polkadot.network/chap-networking#defn-grandpa-justifications-compact
https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-networking#defn-gossip-message

Definition 49. Catch-Up Response Message

This message is the sub-component of the GRANDPA Gossip message (Definition 43) of type Id 3.

A GRANDPA catch-up response message for round , , is a message sent by a node to node in response of a catch-up

request in which is the latest GRANDPA round which v has prove of its finalization and has the following structure:

Where is the highest block which believes to be finalized in round (Definition 72). is the highest ancestor of all blocks voted on in the

arrays of justifications and (Definition 74) with the exception of the equivocatory votes.

This message is the sub-component of the GRANDPA Gossip message (Definition 43) of type Id 4.

r M ​ id ​, rv,i
Cat−s(V) v i

M ​ id ​, rv,i
Cat−q(V ′) r ≥ r′

M ​ =v,i
Cat−s Enc ​ id ​, r, J ​ B , J ​ B ,H ​ B ,H ​ BSC(V 0,…n

r,pv () 0,…m
r,pc () h(′) i(′))

B v r B′

J ​ B0,…n
r,pv () J ​ B0,…m

r,pc ()

https://spec.polkadot.network/chap-networking#defn-gossip-message
https://spec.polkadot.network/sect-finality#defn-voting-rounds
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#defn-gossip-message

5. Block Production

5.1. Introduction
The Polkadot Host uses BABE protocol for block production. It is designed based on Ouroboros praos. BABE execution happens in sequential non-

overlapping phases known as an epoch. Each epoch is divided into a predefined number of slots. All slots in each epoch are sequentially indexed

starting from 0. At the beginning of each epoch, the BABE node needs to run Block-Production-Lottery to find out in which slots it should produce a

block and gossip to the other block producers. In turn, the block producer node should keep a copy of the block tree and grow it as it receives valid

blocks from other block producers. A block producer prunes the tree in parallel by eliminating branches that do not include the most recently

finalized blocks (Definition 5).

5.1.1. Block Producer

A block producer, noted by , is a node running the Polkadot Host, which is authorized to keep a transaction queue and which it gets a turn in

producing blocks.

5.1.2. Block Authoring Session Key Pair

Block authoring session key pair is an SR25519 key pair which the block producer signs by their account key (Definition 167) and is

used to sign the produced block as well as to compute its lottery values in Block-Production-Lottery.

Definition 50. Epoch and Slot

Definition 51. Epoch and Slot Duration

Definition 52. Epoch Subchain

Definition 53. Equivocation

P ​j

sk ​, pk ​(j
s

j
s) P ​j

A block production epoch, formally referred to as , is a period with a pre-known starting time and fixed-length during which the set of block

producers stays constant. Epochs are indexed sequentially, and we refer to the epoch since genesis by . Each epoch is divided into

equal-length periods known as block production slots, sequentially indexed in each epoch. The index of each slot is called a slot number. The

equal length duration of each slot is called the slot duration and indicated by . Each slot is awarded to a subset of block producers during

which they are allowed to generate a block.

E

nth E ​n

T

INFO

Substrate refers to an epoch as a "session" in some places. However, epoch should be the preferred and official name for these periods. |

We refer to the number of slots in epoch by . is set to the duration field in the returned data from the call of the Runtime entry

BabeApi_configuration (Section C.11.1.) at genesis. For a given block , we use the notation to refer to the slot during which has

been produced. Conversely, for slot , is the set of Blocks generated at slot .

Definition 52 provides an iterator over the blocks produced during a specific epoch.

E ​n sc ​n sc ​n

B s ​B B

s B ​c s

By for epoch , we refer to the path graph of containing all the blocks generated during the slots of epoch . When

there is more than one block generated at a slot, we choose the one which is also on .

SubChain E ​(n) E ​n BT E ​n

Longest-Chain BT()

A block producer equivocates if they produce more than one block at the same slot. The proof of equivocation is the given distinct headers

that were signed by the validator and which include the slot number.

https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-state#defn-pruned-tree
https://spec.polkadot.network/id-cryptography-encoding#defn-account-key
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-epoch-subchain

Definition 54. BABE Consensus Message

5.2. Block Production Lottery
The babe constant (Definition 55) is initialized at genesis to the value returned by calling BabeApi_configuration (Section C.11.1.). For efficiency

reasons, it is generally updated by the Runtime through the next config data consensus message in the digest (Definition 11) of the first block of an

epoch for the next epoch.

A block producer aiming to produce a block during should run \<algo-block-production-lottery>> to identify the slots it is awarded. These are the

slots during which the block producer is allowed to build a block. The is the block producer lottery secret key and is the index of the epoch for

whose slots the block producer is running the lottery.

In order to ensure consistent block production, BABE uses secondary slots in case no authority wins the (primary) block production lottery. Unlike

the lottery, secondary slot assignees are known upfront publically (Definition 57). The Runtime provides information on how or if secondary slots are

executed (Section C.11.1.), explained further in Definition 57.

Definition 55. BABE Constant

Definition 56. Winning Threshold

The Polkadot Host must detect equivocations committed by other validators and submit those to the Runtime as described in Section C.11.6..

, the consensus message for BABE, is of the following format:

where

1
implies next epoch data: The Runtime issues this message on every first block of an epoch. The supplied authority set Definition 33,

, and randomness Definition 67, , are used in the next epoch .

2

implies on disabled: A 32-bit integer, , indicating the individual authority in the current authority list that should be immediately

disabled until the next authority set changes. This message's initial intention was to cause an immediate suspension of all authority

functionality with the specified authority.

3
implies next epoch descriptor: These messages are only issued on configuration change and in the first block of an epoch. The

supplied configuration data are intended to be used from the next epoch onwards.

 is a varying datatype of the following format:

where is the probability that a slot will not be empty Definition 55. It is encoded as a tuple of two unsigned 64-bit integers

 which are used to compute the rational .

 describes what secondary slot Definition 57, if any, is to be used. It is encoded as one-byte varying datatype:

CM ​b

CM ​ =b ​ ​ ​⎩⎨
⎧1

2
3

Auth ​, r(C)
A ​i

D

Auth ​C r E ​ +n 1

A ​i

D

D = {1, (c, 2 ​)}nd

c

c ​, c ​nominator denominator c = ​

c ​denominator

c ​nominator

2 ​nd

s ​ =2nd ​ ​⎩⎨
⎧0 → no secondary slot

1 → plain secondary slot
2 → secondary slot with VRF output

E ​n

sk n

The BABE constant is the probability that a slot will not be empty and used in the winning threshold calculation (Definition 56). It’s expressed

as a rational, , where is the numerator and is the denominator.x, y() x y

https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#defn-winning-threshold

5.2.1. Primary Block Production Lottery

A block producer aiming to produce a block during should run the algorithm to identify the slots it is awarded.

These are the slots during which the block producer is allowed to build a block. The session secret key, , is the block producer lottery secret key,

and is the index of the epoch for whose slots the block producer is running the lottery.

Algorithm 6. Block Production Lottery

Definition 57. Secondary Slots

The Winning threshold denoted by is the threshold that is used alongside the result of Block-Production-Lottery to decide if a block

producer is the winner of a specific slot. is calculated as follows:

where is the total sum of all authority weights in the authority set (Definition 33) for epoch , is the weight of the block author and

 is the BABE constant (Definition 55).

The numbers should be treated as 64-bit rational numbers.

T ​E ​n

T ​E ​n

A ​ =w ​ w ​ ∈ Auth ​ B ​

n=1

∑
Auth ​ B∣ C ()∣

(A C()n)

T ​ =E ​n
1 − 1 − c() ​

A ​w

w ​a

A ​w E ​n w ​a

c ∈ 0, 1()

E ​n Block-Production-Lottery
sk

n

Algorithm Block-Production-Lottery

Require: sk
 Epoch-Randomness()

for do
 VRF()

end for
return A

where is defined in (Definition 67), is defined in Definition 51 , creates the BABE VRF transcript (Definition 58)

and is the epoch index, retrieved from the Runtime (Section C.11.1.). and is the secret key, respectively, the public key of the authority.

For any slot in epoch where (Definition 56), the block producer is required to produce a block.

1: r ← n

2: i := 1 to sc ​n

3: (π, d) ← r, i, sk
4: A[i] ← (d,π)
5:

6:

Epoch-Randomness sc ​n VRF
e ​i s ​k p ​k

s n o < T ​E ​n

INFO

The secondary slots (Definition 57) are running alongside the primary block production lottery and mainly serve as a fallback to in case no

authority was selected in the primary lottery.

Secondary slots work alongside primary slot to ensure consistent block production, as described in Section 5.2.. The secondary assignee of a

block is determined by calculating a specific value, , which indicates the index in the authority set (Definition 33). The corresponding

authority in that set has the right to author a secondary block. This calculation is done for every slot in the epoch, (Definition 51).

where

 is the Epoch randomness (Definition 67).

 is the slot number (Definition 50).

 encodes its inner value to the corresponding SCALE value.

 creates a 256-bit Blake2 hash from its inner value.

i ​d

s ∈ sc ​n

p ← h Enc ​ r, s(SC())

i ​ ←d pmodA ​l

r

s

Enc ​ …SC()

h …()

https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-duration
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-winning-threshold
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-duration
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-slot

Definition 58. BABE Slot VRF transcript

5.3. Slot Number Calculation
It is imperative for the security of the network that each block producer correctly determines the current slot numbers at a given time by regularly

estimating the local clock offset in relation to the network (Definition 60).

Polkadot does this synchronization without relying on any external clock source (e.g., through the or the). To stay in synchronization, each producer

is therefore required to periodically estimate its local clock offset in relation to the rest of the network.

This estimation depends on the two fixed parameters (Definition 61) and (Definition 62). These are chosen based on the results of a formal

security analysis, currently assuming a clock drift per day and targeting a probability lower than for an adversary to break BABE in 3 years

with resistance against a network delay up to of the slot time and a Babe constant (Definition 55) of .

All validators are then required to run Median-Algorithm at the beginning of each sync period (Definition 64) to update their synchronization using all

block arrival times of the previous period. The algorithm should only be run once all the blocks in this period have been finalized, even if only

probabilistically (Definition 61). The target slot to which to synchronize should be the first slot in the new sync period.

Definition 59. Slot Offset

 is the lengths of the authority list (Definition 33).

If points to the authority, that authority must claim the secondary slot by creating a BABE VRF transcript (Definition 58). The resulting values

 and are then used in the Pre-Digest item (Definition 65). In the case of secondary slots with plain outputs, respectively the Pre-Digest

being of value 2, the transcript respectively the VRF is skipped.

A ​l

i ​d

o p

The BABE block production lottery requires a specific transcript structure (Definition 165). That structure is used by both primary slots (Block-

Production-Lottery) and secondary slots (Definition 57).

The operators are defined in Definition 166, in Definition 162. The computed outputs, and , are included in the block Pre-Digest

(Definition 65).

t ​ ←1 Transcript ’BABE’()

t ​ ←2 append t ​, ’slot number’, s(1)

t ​ ←3 append t ​, ’current epoch’, e ​(2 i)

t ​ ←4 append t ​, ’chain randomness’, r(3)

t ​ ←5 append t ​, ’vrf-nm-pk’, p ​(4 k)

t ​ ←6 meta-ad t ​, ’VRFHash’, False(5)

t ​ ←7 meta-ad t ​, 64 ​, True(6 le)

h ← prf t ​, False(7)

o = s ​ ⋅k h

p ← dleq_prove t ​,h(7)

dleq_prove o p

DANGER

The calculation described in this section is still to be implemented and deployed: For now, each block producer is required to synchronize

its local clock using NTP instead. The current slot is then calculated by where is defined in Definition 50 and is defined in

Definition 171. That also entails that slot numbers are currently not reset at the beginning of each epoch.

s s = t ​Tunix T t ​unix

k s ​cq

1s 0.5%
​3

1 c = 0.38

Let and be two slots belonging to epochs and . By Slot-Offset we refer to the function whose value is equal to the number

of slots between and (counting) on the time continuum. As such, we have Slot-Offset .

s ​i s ​j E ​k E ​l s ​, s ​(i j)
s ​i s ​j s ​j s ​, s ​ =(i i) 0

https://spec.polkadot.network/sect-block-production#defn-relative-synchronization
https://spec.polkadot.network/sect-block-production#defn-prunned-best
https://spec.polkadot.network/sect-block-production#defn-chain-quality
https://research.web3.foundation/en/latest/polkadot/block-production/Babe#-5.-security-analysis
https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/sect-block-production#algo-median-algorithm
https://spec.polkadot.network/sect-block-production#defn-sync-period
https://spec.polkadot.network/sect-block-production#defn-prunned-best
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time

It is imperative for the security of the network that each block producer correctly determines the current slot numbers at a given time by regularly

estimating the local clock offset in relation to the network (Definition 60).

Definition 60. Relative Time Synchronization

Algorithm 7. Slot Time

Algorithm 8. Median Algorithm

Definition 61. Pruned Best Chain

Definition 62. Chain Quality

Definition 63. Block Arrival Time

The relative time synchronization is a tuple of a slot number and a local clock timestamp describing the last point at which the

slot numbers have been synchronized with the local clock.

s ​, t ​(sync sync)

Algorithm Slot-Time

Require:
return Slot-Offset()

where is the slot number.

s

1: t ​+sync s ​, ssync ×T

s

Algorithm Median-Algorithm

Require:

for do
Slot-Offset()

end for
return Median()

where

 is the sync period used for the estimate.

 is the slot time to estimate.

 is defined in Slot-Time.

 is the slot duration defined in Definition 50.

E, s ​sync

1: T ​ ←s {}
2: B in E ​j

3: t ​ ←est
B T ​+B s ​, s ​B sync ×T

4: T ​ ←s T ​ ∪s t ​est
B

5:

6: T ​s

E

s ​sync

Slot-Offset

T

The pruned best chain is the longest selected chain (Definition 7) with the last Blocks pruned. We chose . The last

(probabilistic) finalized block describes the last block in this pruned best chain.

Crk k k = 140

The chain quality represents the number of slots that are used to estimate the local clock offset. Currently, it is set to .

The prerequisite for such a calculation is that each producer stores the arrival time of each block (Definition 63) measured by a clock that is

otherwise not adjusted by any external protocol.

s ​cq s ​ =cq 3000

https://spec.polkadot.network/sect-block-production#defn-relative-synchronization
https://spec.polkadot.network/sect-block-production#algo-slot-offset
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-state#defn-longest-chain
https://spec.polkadot.network/sect-block-production#defn-block-time

Definition 64. Sync Period

Image 5. An exemplary result of Median Algorithm in first sync epoch with and .

5.4. Production Algorithm
Throughout each epoch, each block producer should run Invoke-Block-Authoring to produce blocks during the slots it has been awarded during that

epoch. The produced block needs to carry the Pre-Digest (Definition 65) as well as the block signature (Definition 66) as Pre-Runtime and Seal

digest items.

Definition 65. Pre-Digest

The block arrival time of block for node formally represented by is the local time of node when node has received block for the

first time. If the node itself is the producer of , is set equal to the time that the block is produced. The index in notation may be

dropped, and B’s arrival time is referred to by when there is no ambiguity about the underlying node.

B j T ​B
j j j B

j B T ​B
j

j T ​B
j

T ​B

A is an interval at which each validator (re-)evaluates its local clock offsets. The first sync period starts just after the genesis block is

released. Consequently, each sync period starts after . The length of the sync period (Definition 62) is equal to and expressed in the

number of slots.

E ​1

E ​i E ​i−1 s ​qc

s ​ =cq 9 k = 1

The Pre-Digest, or BABE header, , is a varying datatype of the following format:

where

1 indicates a primary slot with VRF outputs, 2 a secondary slot with plain outputs and 3 a secondary slot with VRF outputs (Section 5.2.).

Plain outputs are no longer actively used and only exist for backwards compatibility reasons, respectively to sync old blocks.

 is the unsigned 32-bit integer indicating the index of the authority in the authority set (Section 3.3.1.) who authored the block.

P

P = ​ ​ ​ ​⎩⎨
⎧1

2
3

→
→
→

a ​, s, o, p(id)
a ​, s(id)

a ​, s, o, p(id)

a ​id

https://spec.polkadot.network/sect-block-production#algo-block-production
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#defn-block-signature
https://spec.polkadot.network/sect-block-production#defn-chain-quality
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/chap-sync#sect-authority-set

Algorithm 9. Invoke-Block-Authoring

Definition 66. Block Signature

5.5. Epoch Randomness
At the beginning of each epoch, the host will receive the randomness seed (Definition 67) necessary to participate in the block production

lottery in the next epoch from the Runtime, through the consensus message (Definition 54) in the digest of the first block.

Definition 67. Randomness Seed

5.6. Verifying Authorship Right
When a Polkadot node receives a produced block, it needs to verify if the block producer was entitled to produce the block in the given slot by

running Verify-Authorship-Right. Verify-Slot-Winner runs as part of the verification process, when a node is importing a block.

 is the slot number (Definition 50).

 is VRF output (Block-Production-Lottery respectively Definition 57).

 is VRF proof (Block-Production-Lottery respectively Definition 57).

The Pre-Digest must be included as a digest item of Pre-Runtime type in the header digest (Definition 11) .

s

o

p

H ​ Bd()

Algorithm Invoke-Block-Authoring

Require:
 Block-production-lottery()

for do
Wait-Until(Slot-Time())

if then
 Longest-Chain()

 Build-Block()
Add-Digest-Item()
Add-Digest-Item()
Broadcast-Block()

end if
end for

where is the current block tree, is defined in Block-Production-Lottery and appends a

digest item to the end of the header digest (Definition 11).

sk, pk,n,BT
1: A ← sk,n
2: s ← 1 to sc ​n

3: s

4: (d,π) ← A[s]
5: τ > d

6: C ​ ←Best BT

7: B ​ ←s C ​Best

8: B ​, Pre-Runtime,E ​(BABE),H ​(B ​)s id BABE s

9: B ​, Seal,S ​s B

10: B ​s

11:

12:

BT Block-Production-Lottery Add-Digest-Item
H ​ Bd()

The Block Signature is a signature of the block header hash (Definition 12) and defined as

 should be included in as the Seal digest item (Definition 11) of value:

in which, is the seal digest identifier and is the BABE consensus engine unique identifier (Definition 11). The Seal digest item

is referred to as the BABE Seal.

S ​B

Sig ​ H ​ BSR25519,sk ​j
s(h())

m H ​ Bd()

t, id BABE ,m(())

t = 5 id BABE()

E ​n R ​E ​n+1

E ​n+1

For epoch , there is a 32-byte computed based on the previous epochs VRF outputs. For and , the randomness seed is provided in

the genesis state (Section C.11.1.). For any further epochs, the randomness is retrieved from the consensus message (Definition 54).

E R ​E E0 E ​1

https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/sect-block-production#algo-verify-authorship-right
https://spec.polkadot.network/sect-block-production#algo-verify-slot-winner
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-secondary-slots
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-runtime-api#sect-rte-babeapi-epoch
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe

Algorithm 10. Verify Authorship Right

Algorithm 11. Verify Slot Winner

Algorithm Verify-Authorship-Right

Require:
 Slot-Number-At-Given-Time()
 Current-Epoch()

 // remove the seal from the digest

if Seal-Id then
error ‘‘Seal missing''

end if

Verify-Signature()
if and and then

error ‘‘Block producer is equivocating''
end if
Verify-Slot-Winner()

where

 is the header of the block that’s being verified.

 is ’s arrival time (Definition 63).

 is the digest sub-component (Definition 11) of (Definition 10).

The Seal is the last element in the digest array as described in Definition 11.

 is the type index showing that a digest item (Definition 11) of varying type (Definition 179) is of type Seal.

 is the set of Authority ID for block producers of epoch .

i. is the public session key of the block producer.

 is the pruned block tree (Definition 5).

 is defined in Verify-Slot-Winner.

Head ​s(B)

1: s ← T ​B

2: E ​ ←c

3: (D ​, … ,D ​) ←1 ∣H ​(B)∣d
H ​(B)d

4: D ​ ←s D ​∣H ​(B)∣d

5: H ​(B) ←d D ​, … ,D ​(1 ∣H ​(B)∣−1d
)

6: (id, Sig ​) ←B Dec ​(D ​)SC s

7: id =
8:

9:

10: AuthorID ← AuthorityDirectory [H ​(B).SingerIndex]E ​c
BABE

11: AuthorID,H ​(B), Sig ​h B

12: ∃B ∈′ BT : H ​(B) =h  H ​(B)h s ​ =B sB
′ SignerIndex ​ =B SignerIndex ​B′

13:

14:

15: (d ​,π ​), s ​, AuthorIDB B B

Head ​ Bs()

T ​B B

H ​ Bd() Head B()

D ​s H ​ Bd()

Seal-Id

AuthorityDirectoryE ​c E ​c

AuthorId

BT

Verify-Slot-Winner

Algorithm Verify-Slot-Winner

Require:
 Current-Epoch

 Epoch-Randomness()
Verify-VRF()
if then

error ‘‘Block producer is not a winner of the slot''
end if

where

1. is defined in Definition 67.

2. is the BABE header defined in Definition 65.

3. is the block lottery result for block (Block-Production-Lottery), respectively the VRF output (Definition 58).

4. is described in Section A.1.3..

B

1: E ​ ←c

2: ρ ← c

3: ρ,H ​(B).(d ​,π ​),H ​(B).s, cBABE B B BABE

4: d ​ ⩾B τ

5:

6:

Epoch-Randomness

H ​ BBABE()

o, p() B

Verify-VRF

https://spec.polkadot.network/sect-block-production#defn-block-time
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-variable-type
https://spec.polkadot.network/chap-state#defn-pruned-tree
https://spec.polkadot.network/sect-block-production#algo-verify-slot-winner
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-babe-header
https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-babe-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf

5.7. Block Building Process
The block building process is triggered by Invoke-Block-Authoring of the consensus engine which in turn runs Build-Block.

Algorithm 12. Build Block

5. is the winning threshold as defined in Definition 56.T ​E ​n

Algorithm Build-Block

Head()

Call-Runtime-Entry()
I-D Call-Runtime-Entry(Inherent-Data)
for I-D do

Call-Runtime-Entry()
end for
while not End-Of-Slot() do

 Next-Ready-Extrinsic()
 Call-Runtime-Entry()

if Block-Is-Full() then
break

end if
if Should-Drop() then

Drop()
end if

 Call-Runtime-Entry()
 Add-Seal()

end while

where

 is the chain head at which the block should be constructed ("parent").

 is the slot number.

 is defined in Definition 10.

 is defined in Definition 32.

 is defined in Definition 15.

 indicates the end of the BABE slot as defined Median-Algorithm respectively Definition 50.

 indicates picking an extrinsic from the extrinsics queue (Definition 14).

 indicates that the maximum block size is being used.

 determines based on the result whether the extrinsic should be dropped or remain in the extrinsics queue and scheduled

for the next block. The ApplyExtrinsicResult (Definition 210) describes this behavior in more detail.

 indicates removing the extrinsic from the extrinsic queue (Definition 14).

 adds the seal to the block (<<>>) before sending it to peers. The seal is removed again before submitting it to the Runtime.

1: P ​ ←B C ​Best

2: Head(B) ← H ​ ← H ​(P ​),H ​ ← H ​(P ​) + 1,H ​ ← ϕ,H ​ ← ϕ,H ​ ← ϕ(p h B i i B r e d)
3: Core_initialize_block, Head(B)
4: ← BlockBuilder_inherent_extrinsics,
5: E in
6: BlockBuilder_apply_extrinsics,E
7:

8: s

9: E ←
10: R ← BlockBuilder_apply_extrinsics,E
11: R

12:

13:

14: R

15: E

16:

17: Head(B) ← BlockBuilder_finalize_block,B
18: B ← B

19:

C ​Best

s

Head B()

Call-Runtime-Entry

Inherent-Data

End-Of-Slot

Next-Ready-Extrinsic

Block-Is-Full

Should-Drop R

Drop

Add-Seal

https://spec.polkadot.network/sect-block-production#algo-block-production
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/sect-block-production#defn-winning-threshold
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-call-into-runtime
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/sect-block-production#algo-median-algorithm
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-state#defn-transaction-queue
https://spec.polkadot.network/chap-runtime-api#defn-rte-apply-extrinsic-result
https://spec.polkadot.network/chap-state#defn-transaction-queue

6. Finality

6.1. Introduction
The Polkadot Host uses GRANDPA Finality protocol to finalize blocks. Finality is obtained by consecutive rounds of voting by the validator nodes.

Validators execute GRANDPA finality process in parallel to Block Production as an independent service. In this section, we describe the different

functions that GRANDPA service performs to successfully participate in the block-finalization process.

Definition 68. GRANDPA Voter

Definition 69. Authority Set Id

Definition 70. GRANDPA State

Definition 71. GRANDPA Vote

Definition 72. Voting Rounds

A GRANDPA Voter, , represented by a key pair where represents an ed25519 private key, is a node running a GRANDPA

protocol and broadcasting votes to finalize blocks in a Polkadot Host-based chain. The set of all GRANDPA voters for a given block B is

indicated by . In that regard, we have [To do: change function name, only call at genesis, adjust V_B over the sections]

where is a function entrypoint of the Runtime described in Section C.10.1.. We refer to as when there is no

chance of ambiguity.

Analogously we say that a Polkadot node is a non-voter node for block , if it does not own any of the key pairs in .

v K ​, v ​(v
pr

id) k ​v
pr

V ​B

V = grandpa_authorities B()

grandpa_authorities V ​B V

B V ​B

The authority set Id () is an incremental counter which tracks the amount of authority list changes that occurred (Definition 82). Starting

with the value of zero at genesis, the Polkadot Host increments this value by one every time a Scheduled Change or a Forced Change occurs.

The authority set Id is an unsigned 64-bit integer.

id ​V

The GRANDPA state, , is defined as:

where

: is the set of voters.

: is the authority set ID (Definition 69).

: is the voting round number.

GS

GS = V, id ​, r{ V }

V

id ​V

r

A GRANDPA vote or simply a vote for block is an ordered pair defined as

where and are the block hash (Definition 12) and the block number (Definition 10).

B

V B =() H ​ B ,H ​ B(h() i())

H Bh() H ​ Bi()

https://spec.polkadot.network/chap-runtime-api#sect-rte-grandpa-auth
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-state#defn-block-header-hash
https://spec.polkadot.network/chap-state#defn-block-header

Definition 73. Vote Signature

Definition 74. Justification

Definition 75. Finalizing Justification

Definition 76. Equivocation

Voters engage in a maximum of two sub-rounds of voting for each round . The first sub-round is called pre-vote and the second sub-round is

called pre-commit.

By and we refer to the vote cast by voter in round (for block) during the pre-vote and the pre-commit sub-round

respectively.

Voting is done by means of broadcasting voting messages (Section 4.8.6.) to the network. Validators inform their peers about the block

finalized in round by broadcasting a commit message (Play-Grandpa-Round).

r

V ​v
r,pv V ​v

r,pc v r B

r

 refers to the signature of a voter for a specific message in a round and is formally defined as:

where

: is a byte array containing the message to be signed (Definition 71).

: is an unsigned 64-bit integer is the round number.

: is an unsigned 64-bit integer indicating the authority set Id (Definition 69).

Sign ​v ​i

r,stage

Sign ​ =v ​i

r,stage Sig ​ msg, r, id ​ed25519(V)

msg

r

id ​V

The justification for block in round , , is a vector of pairs of the type:

in which either

or is an equivocatory vote.

In all cases, is the signature (Definition 73) of voter broadcasted during either the pre-vote (stage = pv) or the pre-

commit (stage = pc) sub-round of round r. A valid justification must only contain up-to-one valid vote from each voter and must not contain

more than two equivocatory votes from each voter.

B r J Br,stage()

V B , Sign ​ B , v ​((′) v ​i

r,stage(′) id)

B ≥′ B

V ​ Bv ​i

r,pc(′)

Sign ​ Bv ​i

r,stage(′) v ∈id V ​B

We say justifies the finalization of for a non-voter node if the number of valid signatures in for is greater

than .

Note that can only be used by a non-voter node to finalize a block. In contrast, a voter node can only be assured of the finality

(Definition 85) of block by actively participating in the voting process. That is by invoking Play-Grandpa-Round.

The GRANDPA protocol dictates how an honest voter should vote in each sub-round, which is described by Play-Grandpa-Round. After

defining what constitutes a vote in GRANDPA, we define how GRANDPA counts votes.

J Br,pc() B ≥′ B n J Br,pc() B′

​ V ​3
2 ∣ B ∣

J Br,pc()
B

Voter equivocates if they broadcast two or more valid votes to blocks during one voting sub-round. In such a situation, we say that is an

equivocator and any vote cast by in that sub-round is an equivocatory vote, and

v v

V ​ Bv
r,stage() v

Er,stage

https://spec.polkadot.network/chap-networking#sect-msg-grandpa
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-vote
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-sign-round-vote
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#algo-grandpa-round

Definition 77. Set of Observed Direct Votes

Definition 78. Set of Total Observed Votes

Definition 79. Set of Total Potential Votes

Definition 80. Current Pre-Voted Block

represents the set of all equivocators voters in sub-round stage of round . When we want to refer to the number of equivocators whose

equivocation has been observed by voter we refer to it by:

The Polkadot Host must detect equivocations committed by other validators and submit those to the Runtime as described in Section C.10.3..

A vote is invalid if

 does not correspond to a valid block.

 is not an (eventual) descendant of a previously finalized block.

 does not bear a valid signature.

 does no match the current .

 is an equivocatory vote.

r

v

E ​obs v()
r,stage

V ​ =v
r,stage V B()

H B()

B

M ​v
r,stage

id ​V V

V ​v
r,stage

For validator , the set of observed direct votes for Block in round , formally denoted by is equal to the union of:

set of valid votes cast in round and received by such that .

v B r VD ​ Bobs v()
r,stage()

V ​v ​i

r,stage r v V ​ =v ​i

r,stage V B()

We refer to the set of total votes observed by voter in sub-round stage of round by .

The set of all observed votes by in the sub-round stage of round for block , is equal to all of the observed direct votes cast

for block and all of the ’s descendants defined formally as:

The total number of observed votes for Block in round is defined to be the size of that set plus the total number of equivocator voters:

Note that for genesis state we always have .

v r V ​obs v()
r,stage

v r B V ​obs v()
r,stage

B B

V ​ B =obs v()
r,stage() ​ VD ​ B

v ​∈V,B<Bi
′

⋃ obs v()
r,stage(′)

B r

V ​ B =obs v()
r,stage() ​V ​ B ​ +

∣
∣

obs v()
r,stage()

∣
∣

​E ​ ​

∣
∣

obs v()
r,stage

∣
∣

#V ​ B =obs v()
r,pv () V∣ ∣

Let be the set of voters whose vote in the given stage has not been received. We define the total number of potential votes for

Block in round to be:

V ​unobs v()
r,stage

B r

#V ​ B =obs v ,pot()
r,stage () ​V ​ B ​ +

∣
∣

obs v()
r,stage()

∣
∣

​V ​ ​ +
∣
∣

unobs v()
r,stage

∣
∣ Min ​ V , V − ​V ​ B ​ − ​V ​ ​(

3
1

∣ ∣ ∣ ∣
∣
∣

obs v()
r,stage()

∣
∣

∣
∣

unobs v()
r,stage

∣
∣)

The current pre-voted block also know as GRANDPA GHOST is the block chosen by GRANDPA-GHOST:B ​v
r,pv

B ​ =v
r,pv GRANDPA-GHOST r()

https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/sect-finality#algo-grandpa-ghost

Definition 81. Completable Round

Definition 82. GRANDPA Consensus Message

6.2. Initiating the GRANDPA State
In order to participate coherently in the voting process, a validator must initiate its state and sync it with other active validators. In particular,

considering that voting is happening in different distinct rounds where each round of voting is assigned a unique sequential round number , it

needs to determine and set its round counter equal to the voting round currently undergoing in the network. The mandated initialization

procedure for the GRANDPA protocol for a joining validator is described in detail in Initiate-Grandpa.

The process of joining a new voter set is different from the one of rejoining the current voter set after a network disconnect. The details of this

distinction are described further in this section.

Finally, we define when a voter sees a round as completable, that is when they are confident that is an upper bound for what is going to

be finalized in this round.

v B ​v
r,pv

We say that round is completable if and for all :

Note that in practice we only need to check the inequality for those where .

r ​V ​ ​ +
∣
∣

obs v()
r,pc

∣
∣

E ​ >obs v()
r,pc

​V3
2 B >′ B ​v

r,pv

​V ​ ​ −
∣
∣

obs v()
r,pc

∣
∣

E ​ −obs v()
r,pc

​V ​ B ​ >
∣
∣

obs v()
r,pc (′)

∣
∣

​ V
3
2

∣ ∣

B >′ B ​v
r,pv

​V ​ B ​ >
∣
∣

obs v()
r,pc (′)

∣
∣ 0

, the consensus message for GRANDPA, is of the following format:

where

is an unsigned 32-bit integer indicating how deep in the chain the announcing block must be before the change is applied.

1

Implies scheduled change: Schedule an authority set change after the given delay of where

is the block where the change is applied. The earliest digest of this type in a single block will be respected, unless a force change

is present, in which case the force change takes precedence.

2

Implies forced change: Schedule a forced authority set change after the given delay of

where is the block where the change is applied. The earliest digest of this type in a block will be respected.

Forced changes are explained further in Section 6.5..

3

Implies on disabled: An index to the individual authority in the current authority list (Definition 33) that should be immediately

disabled until the next authority set changes. When an authority gets disabled, the node should stop performing any authority

functionality from that authority, including authoring blocks and casting GRANDPA votes for finalization. Similarly, other nodes

should ignore all messages from the indicated authority which pertain to their authority role.

4
Implies pause: A signal to pause the current authority set after the given delay of where is a

block where the change is applied. Once applied, the authorities should stop voting.

5
Implies resume: A signal to resume the current authority set after the given delay of where

is the block where the change is applied. Once applied, the authorities should resume voting.

CM ​g

CM ​ =g ​ ​ ​

⎩
⎨
⎧1

2
3
4
5

Auth ​,N ​(C delay)
m, Auth ​,N ​(C delay)

A ​i

N ​delay

N ​delay

N ​delay

N ​ := ∥SubChain(B,B)∥delay
′ B′

N ​ := ∥SubChain(B,m + B)∥delay
′

B′

N ​ := ∥SubChain(B,B)∥delay
′ B′

N ​ := ∥SubChain(B,B)∥delay
′ B′

r ​v

r r ​n

https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#sect-finality-forced-changes
https://spec.polkadot.network/chap-sync#defn-authority-list

6.2.1. Voter Set Changes

A GRANDPA voter node which is initiating GRANDPA protocol as part of joining a new authority set is required to execute Initiate-Grandpa. The

algorithm mandates the initialization procedure for GRANDPA protocol.

Voter set changes are signaled by Runtime via a consensus engine message (Section 3.3.2.). When Authorities process such messages they must

not vote on any block with a higher number than the block at which the change is supposed to happen. The new authority set should reinitiate

GRANDPA protocol by executing Initiate-Grandpa.

Algorithm 13. Initiate Grandpa

6.3. Rejoining the Same Voter Set
When a voter node rejoins the network after a disconnect from the voter set and with the condition that there has been no change to the voter set at

the time of the disconnect, the node must continue performing the GRANDPA protocol at the same state as before getting disconnected from the

network, ignoring any possible progress in GRANDPA finalization. Following reconnection, the node eventually gets updated to the current

GRANDPA round and synchronizes its state with the rest of the voting set through the process called Catchup (Section 6.6.1.).

6.4. Voting Process in Round

For each round , an honest voter must participate in the voting process by following Play-Grandpa-Round.

Algorithm 14. Play Grandpa Round

INFO

The GRANDPA round number reset to 0 for every authority set change.

Algorithm Initiate-Grandpa

Input:
Last-Finalized-Block
Best-Final-Candidate

GRANDPA-GHOST
Last-Completed-Round

Play-Grandpa-round()

where is the last block which has been finalized on the chain (Definition 85). is equal to the latest round the voter has observed that

other voters are voting on. The voter obtains this information through various gossiped messages including those mentioned in Definition 85.

 is set to 0 if the GRANDPA node is initiating the GRANDPA voting process as a part of a new authority set. This is because the GRANDPA

round number resets to 0 for every authority set change.

r ​,B ​last last

1: ← B ​last

2: (0) ← B ​last

3: (0) ← B ​last

4: ← 0
5: r ​ ←n 1
6: r ​n

B ​last r ​last

r ​last

r

r v

Algorithm Play-Grandpa-Round

Require: ()
 Current local time

 Derive-Primary()
if then

Broadcast(Best-Final-Candidate())
if Best-Final-Candidate() Last-Finalized-Block then

Broadcast(Best-Final-Candidate())
end if

end if
Receive-Messages(until Time or is completable)

 Best-Final-Candidate()
 Best-PreVote-Candidate()

Broadcast()
Receive-Messages(until and Time or is completable)
Broadcast()

r

1: t ​ ←r,v

2: primary ← r

3: v = primary
4: M ​(v

r−1,Fin r − 1)
5: r − 1 ⩾
6: M ​(v

r−1,Prim r − 1)
7:

8:

9: ⩾ t ​ +r ​v, 2 × T r

10: L ← r − 1
11: N ← r

12: M ​(N)v
r,pv

13: B ​ ⩾v
r,pv L (⩾ t ​ +r ​v, 4 × T r)

14: M (B ​)v
r,pc

v
r,pv

https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#defn-finalized-block

Algorithm 15. Derive Primary

Algorithm 16. Best Final Candidate

Algorithm 17. GRANDPA GHOST

repeat
Receive-Messages()
Attempt-To-Finalize-At-Round()

until is completable and Finalizable() and Last-Finalized-Block Best-Final-Candidate()
Play-Grandpa-round()
repeat

Receive-Messages()
Attempt-To-Finalize-At-Round()

until Last-Finalized-Block Best-Final-Candidate()
if Last-Completed-Round then

Last-Completed-Round
end if

where

 is sampled from a log-normal distribution whose mean and standard deviation are equal to the average network delay for a message to

be sent and received from one validator to another.

 is described in Derive-Primary.

The condition of completablitiy is defined in Definition 81.

 function is explained in Best-Final-Candidate.

 is described in Attempt-To-Finalize-At-Round.

 is defined in Finalizable.

15:

16:

17: r

18: r r ⩾ r − 1
19: r + 1
20:

21:

22: r

23: ⩾ r

24: r >
25: ← r

26:

T

Derive-Primary

Best-Final-Candidate

Attempt-To-Finalize-At-Round r()

Finalizable

Algorithm Derive-Primary

Input:
return

where is the GRANDPA round whose primary is to be determined.

r

1: r mod ∣V∣

r

Algorithm Best-Final-Candidate

Input:
 GRANDPA-GHOST()

if then
return

else

if then
return

else
return

end if
end if

where is defined in Definition 79.

r

1: B ​ ←v
r,pv r

2: r = 0
3: B ​v

r,pv

4:

5: C ← {B ∣B ⩽′ ′ B ​∣#V ​(B) >v
r,pv

obv(v),pot
r,pc ′

​∣V∣}3
2

6: C = ϕ

7: B ​v
r,pv

8:

9: E ∈ C : H ​(E) =n max H ​(B)∣B ∈ C(n
′ ′)

10:

11:

#V ​obv v ,pot()
r,pc

Algorithm GRANDPA-GHOST

Input: r

https://spec.polkadot.network/sect-finality#algo-derive-primary
https://spec.polkadot.network/sect-finality#defn-grandpa-completable
https://spec.polkadot.network/sect-finality#algo-grandpa-best-candidate
https://spec.polkadot.network/sect-finality#algo-attempt-to%E2%80%93finalize
https://spec.polkadot.network/sect-finality#algo-finalizable
https://spec.polkadot.network/sect-finality#defn-total-potential-votes

Algorithm 18. Best PreVote Candidate

Algorithm 19. Attempt To Finalize At Round

Algorithm 20. Finalizable

if then

else
 Best-Final-Candidate()

if then

else

end if
end if
return

where

 is the last block which has been finalized on the chain (Definition 85).

 is defined in Definition 78.

1: r = 0
2: G ← B ​last

3:

4: L ← r − 1
5: G = {∀B > L∣#V ​(B) ⩾obs(v)

r,pv
​∣V∣}3

2

6: G = ϕ

7: G ← L

8:

9: G ∈ G∣H ​(G) =n max H ​(B)∣∀B ∈ G(n)
10:

11:

12: G

B ​last

#V ​ Bobs v()
r,pv ()

Algorithm Best-PreVote-Candidate

Input:
 GRANDPA-GHOST()

if Received(and) then

else

end if

r

1: B ​ ←v
r,pv r

2: M ​(B))v ​primary

r,prim B ​ ⩾v
r,pv B > L

3: N ← B

4:

5: N ← B ​v
r,pv

6:

Algorithm Attempt-To-Finalize-At-Round

Require: ()
 Last-Finalized-Block

 Best-Final-Candidate()
if and then

Last-Finalized-Block

if Received-Messages then
Broadcast()
return

end if
end if

r

1: L ←
2: E ← r

3: E ⩾ L V ​(E) >obs(v)
r,pc 2/3∣V∣

4: ← E

5: M ​(E) ∈v
r,Fin /

6: M ​(E)v
r,Fin

7:

8:

9:

Algorithm Finalizable

Require: ()
if is not Completable then

return False
end if

 GRANDPA-GHOST()
if then

return False
end if

 Best-Final-Candidate()
if and Best-Final-Candidate() then

return True
else

r

1: r

2:

3:

4: G ← J (B)r,pv

5: G = ϕ

6:

7:

8: E ​ ←r r

9: E ​ =r  ϕ r − 1 ⩽ E ​ ⩽r G

10:

11:

https://spec.polkadot.network/sect-finality#defn-finalized-block
https://spec.polkadot.network/sect-finality#defn-observed-votes

Note that we might not always succeed in finalizing our best final candidate due to the possibility of equivocation. We might even not finalize

anything in a round (although Play-Grandpa-Round prevents us from moving to the round before finalizing the best final candidate of round

) The example in Definition 83 serves to demonstrate a situation where the best final candidate of a round cannot be finalized during its own

round:

Definition 83. Unfinalized Candidate

6.5. Forced Authority Set Changes
In a case of emergency where the Polkadot network is unable to finalize blocks, such as in an event of mass validator outage, the Polkadot

governance mechanism must enact a forced change, which the Host must handle in a specific manner. Given that in such a case finality cannot be

relied on, the Host must detect the forced change (Definition 82) in a (valid) block and apply it to all forks.

The , which is specified by the governance mechanism, defines the starting block at which is applied. This provides some degree

of probabilistic consensus to the network with the assumption that the forced change was received by most participants and that finality can be

continued.

Image 6. Applying a scheduled change

return False
end if

where the condition for completability is defined in Definition 81.

12:

13:

r + 1
r − 1

Let us assume that we have 100 voters and there are two blocks in the chain (). At round 1, we get 67 pre-votes for and at least

one pre-vote for which means that .

Subsequently, potentially honest voters who could claim not seeing all the pre-votes for but receiving the pre-votes for would pre-

commit to . In this way, we receive 66 pre-commits for and 1 pre-commit for . Henceforth, we finalize since we have a threshold

commit (67 votes) for .

At this point, though, we have as and .

However, at this point, the round is already completable as we know that we have as an upper limit on what

we can finalize and nothing greater than can be finalized at . Therefore, the condition of Play-Grandpa-Round is satisfied and we

must proceed to round 2.

Nonetheless, we must continue to attempt to finalize round 1 in the background as the condition of Attempt-To-Finalize-At-Round has not been

fulfilled.

This prevents us from proceeding to round 3 until either:

We finalize in round 2, or

We receive an extra pre-commit vote for in round 1. This will make it impossible to finalize in round 1, no matter to whom the

remaining pre-commits are going to be cast for (even with considering the possibility of 1/3 of voter equivocating) and therefore we have

.

Both scenarios unblock Play-Grandpa-Round, albeit in different ways: the former

with increasing the and the latter with decreasing .

B ​ <1 B ​2 B ​2

B ​1 GRANDPA-GHOST 1 =() B ​2

B ​2 B ​1

B ​1 B ​1 B ​2 B ​1

B ​1

Best-Final-Candidate r =() B ​2 #V ​ B ​ =obs v ,pot()
r,stage (2) 67 2 > 1

GRANDPA-GHOST 1 =() B ​2

B ​2 r = 1

B ​2

B ​1 B ​2

Best-Final-Candidate r =() B ​1

Last-Finalized-Block ≥ Best-Final-Candidate r − 1()
Last-Finalized-Block Best-Final-Candidate r − 1()

m ∈ CM ​g N ​delay

https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-unfinalized-candidate
https://spec.polkadot.network/sect-finality#defn-consensus-message-grandpa
https://spec.polkadot.network/sect-finality#defn-grandpa-completable
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#algo-attempt-to%E2%80%93finalize
https://spec.polkadot.network/sect-finality#algo-grandpa-round

Image 7. Applying a forced change

6.6. Block Finalization
Definition 84. Justified Block Header

Definition 85. Finalized

The Justified Block Header is provided by the consensus engine and presented to the Polkadot Host, for the block to be appended to the

blockchain. It contains the following parts:

block_header the complete block header (Definition 10) and denoted by .

justification: as defined by the consensus specification indicated by as defined in Definition 74.

authority Ids: This is the list of the Ids of authorities, which have voted for the block to be stored and is formally referred to as . An

authority Id is 256-bit.

Head B()

Just B()

A B()

A Polkadot relay chain node should consider block as finalized if any of the following criteria hold for :n B B ≥′ B

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/sect-finality#defn-grandpa-justification

6.6.1. Catching up

When a Polkadot node (re)joins the network, it requests the history of state transitions in the form of blocks, which it is missing.

Nonetheless, the process is different for a GRANDPA voter node. When a voter node joins the network, it needs to gather the justification (Definition

74) of the rounds it has missed. Through this process, they can safely join the voting process of the current round, on which the voting is taking

place.

6.6.1.1. Sending the catch-up requests

When a Polkadot voter node has the same authority list as a peer voter node who is reporting a higher number for the finalized round field, it should

send a catch-up request message (Definition 48) to the reporting peer. This will allow the node to to catch up to the more advanced finalized round,

provided that the following criteria hold:

The peer node is a GRANDPA voter, and:

The last known finalized round for the Polkadot node is at least 2 rounds behind the finalized round for the peer.

6.6.1.2. Processing the catch-up requests

Only GRANDPA voter nodes are required to respond to the catch-up requests. Additionally, it is only GRANDPA voters who are supposed to send

catch-up requests. As such GRANDPA voters could safely ignore the catch-up requests from non-voter nodes. When a GRANDPA voter node

receives a catch-up request message, it needs to execute Process-Catchup-Request. Note: a voter node should not respond to catch-up requests

for rounds that are actively being voted on, those are the rounds for which Play-Grandpa-Round is not concluded.

Algorithm 21. Process Catchup Request

.

It receives a message in which justifies the finalization (Definition 74).

It receives a block data message for with (Definition 84) which justifies the finalization.

for:

Any round if the node is not a GRANDPA voter.

Only for round for which the node has invoked Play-Grandpa-Round and round if is a GRANDPA voter and has already caught

up to its peers according to the process described in Section Section 6.6.1..

Note that all Polkadot relay chain nodes are supposed to process GRANDPA commit messages regardless of their GRANDPA voter status.

V ​ B >obs n()
r,pc (′) ​ V ​3

2 ∣ B′ ∣

M ​ Bv
r,Fin(′) J Br()

B′ Just B(′)

r n

r n r + 1 n

Algorithm Process-Catchup-Request

Input:
if then

error ‘‘Catching up on different set''
end if
if then

error ‘‘Requesting catching up from a non-peer''
end if
if Last-Completed-Round then

error ‘‘Catching up on a round in the future''
end if
Send()

where

 is the catch-up message received from peer (Definition 48).

 (Definition 69) is the voter set id with which the serving node is operating

 is the round number for which the catch-up is requested for.

 is the set of immediate peers of node .

M ​(id ​, r)i,v
Cat-q

V

1: M ​(id ​, r).id ​ =i,v
Cat-q

V V  id ​V
2:

3:

4: i ∈/ P
5:

6:

7: r >
8:

9:

10: i,M ​(id ​, r)v,i
Cat-s

V

M ​ id ​, ri,v
Cat−q(V) i

id ​V

r

P v

https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/sect-finality#algo-process-catchup-request
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/sect-finality#defn-justified-block-header
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/sect-finality#sect-grandpa-catchup
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-request-msg
https://spec.polkadot.network/sect-finality#defn-authority-set-id

6.6.1.3. Processing catch-up responses

A Catch-up response message contains critical information for the requester node to update their view on the active rounds which are being voted

on by GRANDPA voters. As such, the requester node should verify the content of the catch-up response message and subsequently updates its

view of the state of the finality of the Relay chain according to Process-Catchup-Response.

Algorithm 22. Process Catchup Response

 is initiated in Initiate-Grandpa and gets updated by Play-Grandpa-Round.

 is the catch-up response (Definition 49).

Last-Completed-Round

M ​ id ​, rv,i
Cat−s(V)

Algorithm Process-Catchup-Response

Input:

if then
error ‘‘Catching up on different set''

end if
if Leading-Round then

error ‘‘Catching up in to the past''
end if
if is not valid then

error ‘‘Invalid pre-vote justification''
end if
if is not valid then

error ‘‘Invalid pre-commit justification''
end if

 GRANDPA-GHOST()
if then

error ‘‘GHOST-less Catch-up''
end if
if is not completable then

error ‘‘Catch-up round is not completable''
end if
if justifies finalization then

error ‘‘Unjustified Catch-up target finalization''
end if
Last-Completed-Round
if then

Play-Grandpa-round()
end if

where is the catch-up response received from node (Definition 49).

M ​(id ​, r)v,i
Cat-s

V
1: M ​(id ​, r).id ​, r, J (B), J (B),H ​(B),H ​(B) ←v,i

Cat-s
V V

r,pv r,pc
h

′
i

′ Dec ​(M ​(id ​, r)SC v,i
Cat−s

V
2: M ​(id ​, r).id ​ =v,i

Cat-s
V V  id ​V

3:

4:

5: r ⩽
6:

7:

8: J (B)r,pv

9:

10:

11: J (B)r,pc

12:

13:

14: G ← J (B)r,pv

15: G = ϕ

16:

17:

18: r

19:

20:

21: J (B)r,pc B′

22:

23:

24: ← r

25: i ∈ V
26: r + 1
27:

M ​ id ​, rv,i
Cat−s(V) v

https://spec.polkadot.network/sect-finality#algo-process-catchup-response
https://spec.polkadot.network/sect-finality#algo-initiate-grandpa
https://spec.polkadot.network/sect-finality#algo-grandpa-round
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg
https://spec.polkadot.network/chap-networking#defn-grandpa-catchup-response-msg

7. Light Clients

7.1. Requirements for Light Clients
We list the requirements of a Light Client categorized along the three dimensions of Functionality, Efficiency, and Security.

Functional Requirements:

i. Update state (Section 2.4.) to reflect the latest view of the blockchain via synchronization with full nodes.

ii. (Optional) Verify validity of runtime transitions (Section 2.6.).

iii. Make queries for data at the latest block height or across a range of blocks.

iv. Append extrinsics (Section 2.3.) to the blockchain via full nodes.

Efficiency Requirements:

i. Efficient bootstrapping and syncing: initializations and update functions of the state have tractable computation and communication

complexity and grows at most linearly with the chain size. Generally, the complexity is proportional to the GRANDPA validator set change.

ii. Querying operations happen by requesting the key-value pair from a full node.

iii. Further, verifying the validity of responses by the full node is logarithmic in the size of the state.

Security Requirements:

i. Secure bootstrapping and Synchronizing: The probability that an adversarial full node convinces a light client of a forged blockchain state is

negligible.

ii. Secure querying: The probability that an adversary convinces a light client to accept a forged account state is negligible.

iii. Assure that the submitted extrinsics are appended in a successor block or inform the user in case of failure.

Polkadot Specific Requirements:

i. The client MUST be able to connect to a relay chain using chain state.

ii. The client MUST be able to retrieve the checkpoint state from a trusted source to speed up initialization.

iii. The client MUST be able to subscribe/unsubscribe to/from any polkadot-spec-conformant relay chain (Polkadot, Westend, Kusama)

iv. The client MUST be able to subscribe/unsubscribe to/from parachains that do not use custom protocols or cryptography methods other

than those that Polkadot, Westend and Kusama use.

v. The client MUST support the following RPC methods: rpc_methods , chainHead_unstable_follow , chainHead_unstable_unfollow ,
chainHead_unstable_unpin , chainHead_unstable_storage , chainHead_unstable_call chainHead_unstable_stopCall .
transaction_unstable_submitAndWatch , and transaction_unstable_unwatch

vi. The client MUST support the @substrate/connect connection extension protocol: ToApplicationError , ToApplicationChainReady ,
ToApplicationRpc , ToExtensionAddChain , ToExtensionAddWellKnownChain , ToExtensionRpc , ToExtensionRemoveChain .

7.2. Warp Sync for Light Clients
Warp sync (Section 4.8.4.) only downloads the block headers where authority set changes occurred, so-called fragments (Definition 41), and by

verifying the GRANDPA justifications (Definition 74). This protocol allows nodes to arrive at the desired state much faster than fast sync. Warp sync

is primarily designed for Light Clients. Although, warp sync could be used by full nodes, the sync process may lack information to cater to complete

functionality set of full nodes.

For light clients, it is too expensive to download the state (approx. 550MB) to respond to queries. Rather, the queries are submitted to the Full node,

and only the response of the full node is validated using the hash of the state root. Requests for warp sync are performed using the

/dot/sync/warp Request-Response substream, the corresponding network messages are detailed in Section 4.7..

https://spec.polkadot.network/chap-state#sect-state-storage
https://spec.polkadot.network/chap-state#sect-runtime-interaction
https://spec.polkadot.network/chap-state#sect-extrinsics
https://github.com/paritytech/json-rpc-interface-spec
https://github.com/paritytech/substrate-connect/tree/main/packages/connect-extension-protocol
https://spec.polkadot.network/chap-networking#sect-msg-warp-sync
https://spec.polkadot.network/chap-networking#defn-warp-sync-proof
https://spec.polkadot.network/sect-finality#defn-grandpa-justification
https://spec.polkadot.network/chap-networking#sect-protocols-substreams

Light clients base their trust in provided snapshots and the ability to slash grandpa votes for equivocation for the period they are syncing via warp

sync. Full nodes and above, in contrast, verify each block individually.

In theory, the warp sync process takes the Genesis Block as input and outputs the hash of the state trie root at the latest finalized block. This root

hash acts as proof to further validate the responses to queries by the full node. The warp sync works by starting from a trusted specified block

(e.g., from a snapshot) and verifying the block headers only at the authority set changes.

Eventually, the light client verifies the finality of the block returned by a full node to ensure that the block is indeed the latest finalized block. This

entails two things:

1. Check the authenticity of GRANDPA Justifications messages from Genesis to the last finalized block.

2. Check the timestamp of the last finalized block to ensure that no other blocks might have been finalized at a later timestamp.

We outline the warp sync process, abstracting out details of verifying the finality and how the full node to sync with is selected.

Algorithm 23. Warp Sync Light Clients

The warp syncing process is closely coupled with the state querying procedure used by the light client. We outline the process of querying the state

by a light client and validating the response.

Algorithm 24. Querying State Light Clients

CAUTION

Long-Range Attack Vulnerabilities: Warp syncing is particularly vulnerable to what is called long-range attacks. The authorities allowed to

finalize blocks can generate multiple proofs of finality for multiple different blocks of the same height. Hence, they can finalize more than one

chain at a time. It is possible for two-thirds of the validators that were active at a certain past block N to collude and decide to finalize a

different block N', even when N has been finalized for the first time several weeks or months in the past. When a client then warp syncs, it can

be tricked to consider this alternative block N' as the finalized one. However, in practice, to mitigate Long-Range Attacks, the starting point of

the warp syncing is not too far in the past. How far exactly depends on the logic of the runtime of the chain. For example, in Polkadot, the

starting block for the sync should be at max 28 days old to be within the purview of the slashing period for misbehaving nodes. Hence, even

though, in theory, warp sync can start from Genesis Block, it is not advised to implement the same in practice.

Algorithm Warp-Sync-Light-Clients

Input: BlockHeader startblock, the initial block to start the sync. May not be the Genesis Block.

Output: CommitmentRootHash , State Tries Root hash of the latest finalized Block.
fullnode SelectFullNode
latestBlockHeader, grandpaJustifications SyncWithNode(fullnode)
isVerified verifyAuthoritySetChange(grandpaJustifications) verifyFinality(latestBlockHeader)
if isVerified then

 getCommitmentRootHash(latestBlockHeader)
end if

Abstraction of Warp Sync and verification of the latest block’s finality.

: Determines the full node that the light client syncs with.

: Returns the header of the latest finalized block and a list of Grandpa Justifications by the full node.

: Verification algorithm which checks the authenticity of the header only at the end of an era where the

authority set changes iteratively until reaching the latest era.

: Verifies the finality of the latest block using the Grandpa Justifications messages.

root

1: ←
2: ←
3: ← ∧
4:

5: return SOME

6:

7: throw ERROR

SelectFullNode

SyncSithNode

verifyAuthoritySetChange

verifyF inalty

Algorithm Querying-State-Light-Clients

Input: Query q, BlockHeight h, CommitmentRootHash

Output: Maybe Result
(,)
if then

root

res

1: res π ← QueryFullNode(q,h)
2: validityCheck ​(res,π)root

7.3. Runtime Environment for Light Clients
Technically, though a runtime execution environment is not necessary to build a light client, most clients require interacting with the Runtime and the

state of the blockchain for integrity checks at the minimum. One can imagine an application scenario like an on-chain light client which only listens to

the latest state without ever adding extrinsics. Current implementations of Light Nodes (for e.g., Smoldot) use the wasmtime as its runtime

environment to drastically simplify the code. The performance of wasmtime is satisfying enough not to require a native runtime. The details of the

runtime API that the environment needs to support can be found in (Appendix C).

7.4. Light Client Messages
Light clients are applications that fetch the required data that they need from a Polkadot node with an associated proof to validate the data. This

makes it possible to interact with the Polkadot network without requiring to run a full node or having to trust the remote peers. The light client

messages make this functionality possible.

All light client messages are protobuf encoded and are sent over the /dot/light/2 substream.

7.4.1. Request

A message with all possible request messages. All messages are sent as part of this message.

Type Id Description

oneof (request) The request type

Where the request can be one of the following fields:

Type Id Description

RemoteCallRequest 1 A remote call request (Definition 86)

RemoteReadRequest 2 A remote read request (Definition 88)

RemoteReadChildRequest 4 A remote read child request (Definition 90)

7.4.2. Response

A message with all possible response messages. All messages are sent as part of this message.

Type Id Description

oneof (response) The response type

Where the response can be one of the following fields:

Type Id Description

RemoteCallResponse 1 A remote call response (Definition 87)

end if

Querying State Algorithm.

: Returns the response to the query requested from the Full Node for the query at block height .

: Predicate that checks the validity of response and associated merkle proof by matching it against the Commit Root

Hash obtained as a result of warp sync.

3: return SOME res

4:

5: throw ERROR

QueryFullNode q h

validityCheck ​root res π

root

https://spec.polkadot.network/chap-runtime-api
https://spec.polkadot.network/sect-lightclient#sect-light-remote-call-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-child-request
https://spec.polkadot.network/sect-lightclient#sect-light-remote-call-response

Type Id Description

RemoteReadResponse 2 A remote read response (Definition 89)

7.4.3. Remote Call Messages

Execute a call to a contract at the given block.

Definition 86. Remote Call Request

Definition 87. Remote Call Response

7.4.4. Remote Read Messages

Read a storage value at the given block.

Definition 88. Remote Read Request

Definition 89. Remote Read Response

Remote call request.

Type Id Description

bytes 2 Block at which to perform call

string 3 Method name

bytes 4 Call data

Remote call response.

Type Id Description

bytes 2 An Option type (Definition 180) containing the call proof or None if proof generation failed.

Remote read request.

Type Id Description

bytes 2 Block at which to perform call

repeated bytes 3 Storage keys

Remote read response.

Type Id Description

bytes 2 An Option type (Definition 180) containing the read proof or None if proof generation failed.

https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-response
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

7.4.5. Remote Read Child Messages

Read a child storage value at the given block.

Definition 90. Remote Read Child Request

7.5. Storage for Light Clients
The light client requires a persistent storage for saving the state of the blockchain. In addition, it requires efficient Serialization/De-serialization

methods to transform SCALE (Section A.2.2.) encoded network traffic for storing and reading from the persistent storage.

Remote read child request.

Type Id Description

bytes 2 Block at which to perform call

bytes 3 Child storage key, this is relative to the child type storage location

bytes 6 Storage keys

The response is the same as for the Remote Read Request message, respectively Definition 89.

https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-lightclient#sect-light-remote-read-response

8. Availability & Validity
Polkadot serves as a replicated shared-state machine designed to resolve scalability issues and interoperability among blockchains. The validators

of Polkadot execute transactions and participate in the consensus of Polkadots primary chain, the so-called relay chain. Parachains are independent

networks that maintain their own state and are connected to the relay chain. Those parachains can take advantage of the relay chain consensus

mechanism, including sending and receiving messages to and from other parachains. Parachain nodes that send parachain blocks, known as

candidates, to the validators in order to be included in relay chain are referred to as collators.

The Polkadot relay chain validators are responsible for guaranteeing the validity of both relay chain and parachain blocks. Additionally, the validators

are required to keep enough parachain blocks that should be included in the relay chain available in their local storage in order to make those

retrievable by peers, who lack the information to reliably confirm the issued validity statements about parachain blocks. The Availability & Validity

(AnV) protocol consists of multiple steps for successfully upholding those responsibilities.

Parachain blocks themselves are produced by collators (Section 8.1.), whereas the relay chain validators only verify their validity (and later, their

availability). It is possible that the collators of a parachain produce multiple parachain block candidates for a child of a specific block. Subsequently,

they send the block candidates to the relay chain validators who are assigned to the specific parachain. The assignment is determined by the

Runtime (Section 8.2.). Those validators are then required to check the validity of submitted candidates (Section 8.3.), then issue and collect

statements (Section 8.2.1.) about the validity of candidates to other validators. This process is known as candidate backing. Once a candidate meets

specified criteria for inclusion, the selected relay chain block author then chooses any of the backed candidates for each parachain and includes

those into the relay chain block (Section 8.2.2.).

Every relay chain validator must fetch the proposed candidates and issue votes on whether they have the candidate saved in their local storage, so-

called availability votes (Section 8.4.1.), then also collect the votes sent by other validators and include them in the relay chain state (Section 8.2.2.).

This process ensures that only relay chain blocks get finalized where each candidate is available on enough nodes of validators.

Parachain candidates contained in non-finalized relay chain blocks must then be retrieved by a secondary set of relay chain validators, unrelated

from the candidate backing process, who are randomly assigned to determine the validity of specific parachains based on a VRF lottery and are then

required to vote on the validity of those candidates. This process is known as approval voting (Section 8.5.). If a validator does not have the

candidate data, it must recover the candidate data (Section 8.4.2.).

8.1. Collations
Collations are proposed candidates Definition 121 to the Polkadot relay chain validators. The Polkodat network protocol is agnostic on what

candidate production mechanism each parachain uses and does not specify or mandate any of such production methods (e.g. BABE-GRANDPA,

Aura, etc). Furthermore, the relay chain validator host implementation itself does not directly interpret or process the internal transactions of the

candidate but rather rely on the parachain Runtime to validate the candidate (Section 8.3.). Collators, which are parachain nodes which produce

candidate proposals and send them to the relay chain validator, must prepare pieces of data (Definition 91) in order to correctly comply with the

requirements of the parachain protocol.

Definition 91. Collation

A collation is a data structure that contains the proposed parachain candidate, including an optional validation parachain Runtime update and

upward messages. The collation data structure, C, is a data structure of the following format:

where

 is an array of upward messages (Definition 127), , interpreted by the relay chain itself.

 is an array of outbound horizontal messages (Definition 129), , interpreted by other parachains.

 is an Option type (Definition 180) which can contain a parachain Runtime update. The new Runtime code is an array of bytes.

 is the head data (Definition 123) produced as a result of execution of the parachain specific logic.

 is the PoV block (Definition 122).

C = M ,H,R,h,P , p,w()

M = u ​, …u ​(n m)

H = z ​, … z ​(n m)

M u

H z

R

h

P

https://spec.polkadot.network/chapter-anv#sect-collations
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#defn-candidate
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#defn-collation
https://spec.polkadot.network/chapter-anv#defn-upward-message
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-para-block

8.2. Candidate Backing
The Polkadot validator receives an arbitrary number of parachain candidates with associated proofs from untrusted collators. The assigned

validators of each parachain (Definition 126) must verify and select a specific quantity of the proposed candidates and issue those as backable

candidates to their peers. A candidate is considered backable when at least 2/3 of all assigned validators have issued a Valid statement about that

candidate, as described in Section 8.2.1.. Validators can retrieve information about assignments via the Runtime APIs Section C.9.2. respectively

Section C.9.3..

8.2.1. Statements

The assigned validator checks the validity of the proposed parachains blocks (Section 8.3.) and issues Valid statements (Definition 92) to its peers if

the verification succeeded. Broadcasting failed verification as Valid statements is a slashable offense. The validator must only issue one Seconded

statement based on an arbitrary metric, which implies an explicit vote for a candidate to be included in the relay chain.

This protocol attempts to produce as many backable candidates as possible but does not attempt to determine a final candidate for inclusion. Once

a parachain candidate has been seconded by at least one other validator, and enough Valid statements have been issued about that candidate to

meet the 2/3 quorum, the candidate is ready to be included in the relay chain (Section 8.2.2.).

The validator issues validity statements votes in form of a validator protocol message (Definition 104).

Definition 92. Statement

8.2.2. Inclusion

The Polkadot validator includes the backed candidates as parachain inherent data (Definition 93) into a block as described Section 2.3.3.. The relay

chain block author decides on whatever metric which candidate should be selected for inclusion, as long as that candidate is valid and meets the

validity quorum of 2/3+ as described in Section 8.2.1.. The candidate approval process (Section 8.5.) ensures that only relay chain blocks are

finalized where each candidate for each availability core meets the requirement of 2/3+ availability votes.

Definition 93. Parachain Inherent Data

 is an unsigned 32-bit integer indicating the number of processed downward messages (Definition 128).

 is an unsigned 32-bit integer indicating the mark up to which all inbound HRMP messages have been processed by the parachain.

p

w

A statement, , is a data structure of the following format:

where

 is a varying datatype where 1 indicates that the validator “seconds” a candidate, meaning that the candidate should be included in the

relay chain, followed by the committed candidate receipt (Definition 95), . 2 indicates that the validator has deemed the candidate valid,

followed by the candidate hash.

 is the candidate hash.

 is the validator index in the authority set that signed this statement.

 is the signature of the validator.

S

S = d,A ​,A ​(i s)

d = ​ ​ ​{1
2

→
→

C ​r

C ​h

d

C ​r

C ​h

A ​i

A ​s

The parachain inherent data contains backed candidates and is included when authoring a relay chain block. The data structure, , is of the

following format:

I

I = A,T ,D,P ​(h)

T = C ​, …C ​(0 n)

https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validator-groups
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chap-state#sect-inherents
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#defn-downward-message
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt

Definition 94. Candidate Receipt

Definition 95. Committed Candidate Receipt

Definition 96. Candidate Descriptor

where

 is an array of signed bitfields by validators claiming the candidate is available (or not). The array must be sorted by validator index

corresponding to the authority set (Definition 33).

 is an array of backed candidates for including in the current block.

 is an array of disputes.

 is the parachain parent head data (Definition 123).

 is a dispute statement (Section 8.7.2.1.).

 is a committed candidate receipt (Definition 95).

 is an array of validity votes themselves, expressed as signatures.

 is a bitfield of indices of the validators within the validator group (Definition 126).

 is either an implicit or explicit attestation of the validity of a parachain candidate, where 1 implies an implicit vote (in correspondence of a

Seconded statement) and 2 implies an explicit attestation (in correspondence of a Valid statement). Both variants are followed by the

signature of the validator.

 is the signature of the validator.

 the availability bitfield (Section 8.4.1.).

 is the validator index of the authority set (Definition 33).

D = d ​, … d(n m)

C = R,V , i()

V = a ​, … a ​(n m)

a = ​ ​ ​{1
2

→
→

s

s

A = L ​, …L ​(n m)

L = b, v ​, s(i)

A

T

D

P ​h

d

R

V

i

a

s

b

v ​i

A candidate receipt, , contains information about the candidate and a proof of the results of its execution. It’s a data structure of the following

format:

where is the candidate descriptor (Definition 96) and is the hash of candidate commitments (Definition 97).

R

R = D,C ​(h)

D C ​h

The committed candidate receipt, , contains information about the candidate and the result of its execution that is included in the relay chain.

This type is similar to the candidate receipt (Definition 94), but actually contains the execution results rather than just a hash of it. It’s a data

structure of the following format:

where is the candidate descriptor (Definition 96) and is the candidate commitments (Definition 97).

R

R = D,C()

D C

https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments

Definition 97. Candidate Commitments

8.3. Candidate Validation
Received candidates submitted by collators and must have their validity verified by the assigned Polkadot validators. For each candidate to be valid,

the validator must successfully verify the following conditions in the following order:

1. The candidate does not exceed any parameters in the persisted validation data (Definition 220).

2. The signature of the collator is valid.

3. Validate the candidate by executing the parachain Runtime (Section 8.3.1.).

If all steps are valid, the Polkadot validator must create the necessary candidate commitments (Definition 97) and submit the appropriate statement

for each candidate (Section 8.2.1.).

The candidate descriptor, , is a unique descriptor of a candidate receipt. It’s a data structure of the following format:

where

 is the parachain Id (Definition 124).

 is the hash of the relay chain block the candidate is executed in the context of.

 is the collators public key.

 is the hash of the persisted validation data (Definition 220).

 is the hash of the PoV block.

 is the root of the block’s erasure encoding Merkle tree.

 the collator signature of the concatenated components , , and .

 is the hash of the parachain head data (Definition 123) of this candidate.

 is the hash of the parachain Runtime.

D

D = p,H,C ​,V ,B, r, s, p ​,R ​(i h h)

p

H

C ​i

V

B

r

s p H R ​h B

p ​h

R ​h

The candidate commitments, , is the result of the execution and validation of a parachain (or parathread) candidate whose produced values

must be committed to the relay chain. Those values are retrieved from the validation result (Definition 99). A candidate commitment is a

datastructure of the following format:

where

 is an array of upward messages sent by the parachain. Each individual message, m, is an array of bytes.

 is an array of individual outbound horizontal messages (Definition 129) sent by the parachain.

 is an Option value (Definition 180) that can contain a new parachain Runtime in case of an update.

 is the parachain head data (Definition 123).

 is an unsigned 32-bit integer indicating the number of downward messages that were processed by the parachain. It is expected that the

parachain processes the messages from first to last.

 is an unsigned 32-bit integer indicating the watermark, which specifies the relay chain block number up to which all inbound horizontal

messages have been processed.

C

C = M ​,M ​,R,h, p,w(u h)

M ​u

M ​h

R

h

p

w

https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#sect-parachain-runtime
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-validation-result
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-head-data

8.3.1. Parachain Runtime

Parachain Runtimes are stored in the relay chain state, and can either be fetched by the parachain Id or the Runtime hash via the relay chain Runtime

API as described in Section C.9.8. and Section C.9.9. respectively. The retrieved parachain Runtime might need to be decompressed based on the

magic identifier as described in Section 8.3.2..

In order to validate a parachain block, the Polkadot validator must prepare the validation parameters (Definition 98), then use its local Wasm

execution environment (Section 2.6.3.) to execute the validate_block parachain Runtime API by passing on the validation parameters as an

argument. The parachain Runtime function returns the validation result (Definition 99).

Definition 98. Validation Parameters

Definition 99. Validation Result

8.3.2. Runtime Compression

Runtime compression is not documented yet.

The validation parameters structure, , is required to validate a candidate against a parachain Runtime. It’s a data structure of the following

format:

where

 is the parachain head data (Definition 123).

 is the block body (Definition 122).

 is the latest relay chain block number.

 is the relay chain block storage root (Section 2.4.4.).

P

P = h, b,B ​,S ​(i r)

h

b

B ​i

S ​r

The validation result is returned by the validate_block parachain Runtime API after attempting to validate a parachain block. Those results

are then used in candidate commitments (Definition 97), which then will be inserted into the relay chain via the parachain inherent data

(Definition 93). The validation result, , is a data structure of the following format:

where

 is the parachain head data (Definition 123).

 is an Option value (Definition 180) that can contain a new parachain Runtime in case of an update.

 is an array of upward messages sent by the parachain. Each individual message, m, is an array of bytes.

 is an array of individual outbound horizontal messages (Definition 129) sent by the parachain.

 is an unsigned 32-bit integer indicating the number of downward messages that were processed by the parachain. It is expected that the

parachain processes the messages from first to last.

 is an unsigned 32-bit integer indicating the watermark, which specifies the relay chain block number up to which all inbound horizontal

messages have been processed.

V

V = h,R,M ​,M , p ​w(u h ,)

M ​ =u m ​, …m ​(0 n)

M ​ =h t ​, … t ​(0 n)

h

R

M ​u

M ​h

p

w

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validation-code
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validation-code-by-hash
https://spec.polkadot.network/chapter-anv#sect-runtime-compression
https://spec.polkadot.network/chapter-anv#defn-validation-parameters
https://spec.polkadot.network/chap-state#sect-code-executor
https://spec.polkadot.network/chapter-anv#defn-validation-result
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-state#sect-merkl-proof
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-outbound-hrmp-message

8.4. Availability

8.4.1. Availability Votes

The Polkadot validator must issue a bitfield (Definition 131) which indicates votes for the availability of candidates. Issued bitfields can be used by

the validator and other peers to determine which backed candidates meet the 2/3+ availability quorum.

Candidates are inserted into the relay chain in the form of parachain inherent data (Section 8.2.2.) by a block author. A validator can retrieve that

data by calling the appropriate Runtime API entry (Section C.9.3.), then create a bitfield indicating for which candidate the validator has availability

data stored and broadcast it to the network (Definition 108). When sending the bitfield distribution message, the validator must ensure is set

appropriately, therefore clarifying to which state the bitfield is referring to, given that candidates can vary based on the chain fork.

Missing availability data of candidates must be recovered by the validator as described in Section 8.4.2.. If previously issued bitfields are no longer

accurate, i.e., the availability data has been recovered or the candidate of an availability core has changed, the validator must create a new bitfield

and broadcast it to the network. Candidates must be kept available by validators for a specific amount of time. If a candidate does not receive any

backing, validators should keep it available for about one hour, in case the state of backing does change. Backed and even approved candidates

(Section 8.5.) must be kept by validators for about 25 hours since disputes (Section 8.6.) can occur and the candidate needs to be checked again.

The validator issues availability votes in form of a validator protocol message (Definition 105).

8.4.2. Candidate Recovery

The availability distribution of the Polkadot validator must be able to recover parachain candidates that the validator is assigned to, in order to

determine whether the candidate should be backed (Section 8.2.) respectively whether the candidate should be approved (Section 8.5.).

Additionally, peers can send availability requests as defined in Definition 112 and Definition 114 to the validator, which the validator should be able to

respond to.

Candidates are recovered by sending requests for specific indices of erasure encoded chunks (Section A.4.1.). A validator should request chunks by

picking peers randomly and must recover at least chunks, where and . is the number of validators as specified in

the session info, which can be fetched by the Runtime API as described in Section C.9.13..

8.5. Approval Voting
The approval voting process ensures that only valid parachain blocks are finalized on the relay chain. After backable parachain candidates were

submitted to the relay chain (Section 8.2.2.), which can be retrieved via the Runtime API (Section C.9.3.), validators need to determine their

assignments for each parachain and issue approvals for valid candidates, respectively disputes for invalid candidates. Since it cannot be expected

that each validator verifies every single parachain candidate, this mechanism ensures that enough honest validators are selected to verify parachain

candidates in order to prevent the finalization of invalid blocks. If an honest validator detects an invalid block that was approved by one or more

validators, the honest validator must issue a dispute which will cause escalations, resulting in consequences for all malicious parties, i.e., slashing.

This mechanism is described more in Section 8.5.1..

8.5.1. Assignment Criteria

Validators determine their assignment based on a VRF mechanism, similar to the BABE consensus mechanism. First, validators generate an

availability core VRF assignment (Definition 101), which indicates which availability core a validator is assigned to. Then a delayed availability core

VRF assignment is generated, which indicates at what point a validator should start the approval process. The delays are based on “tranches”

(Section 8.5.2.).

An assigned validator never broadcasts their assignment until relevant. Once the assigned validator is ready to check a candidate, the validator

broadcasts their assignment by issuing an approval distribution message (Definition 109), where is of variant 0. Other assigned validators that

receive that network message must keep track of if, expecting an approval vote following shortly after. Assigned validators can retrieve the

candidate by using the availability recovery (Section 8.4.2.) and then validate the candidate (Section 8.3.).

The validator issues approval votes in form of a validator protocol message (Definition 104) respectively disputes (Section 8.6.).

8.5.2. Tranches

Validators use a subjective, tick-based system to determine when the approval process should start. A validator starts the tick-based system when a

new availability core candidate have been proposed, which can be retrieved via the Runtime API (Section C.9.3.), and increments the tick every 500

milliseconds. Each tick/increment is referred to as a “tranche”, represented as an integer, starting at 0.

B ​h

f + 1 n = 3f + k k ∈ 1, 2, 3{ } n

M

https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#net-msg-bitfield-dist-msg
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#sect-disputes
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-available-data-request
https://spec.polkadot.network/id-cryptography-encoding#sect-erasure-encoding
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#sect-candidate-inclusion
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/chapter-anv#net-msg-approval-distribution
https://spec.polkadot.network/chapter-anv#sect-candidate-recovery
https://spec.polkadot.network/chapter-anv#sect-candidate-validation
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-disputes
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores

As described in Section 8.5.1., the validator first executes the VRF mechanism to determine which parachains (availability cores) the validator is

assigned to, then an additional VRF mechanism for each assigned parachain to determine the delayed assignment. The delayed assignment

indicates the tranche at which the validator should start the approval process. A tranche of value 0 implies that the assignment should be started

immediately, while later assignees of later tranches wait until it’s their term to issue assignments, determined by their subjective, tick-based system.

Validators are required to track broadcasted assignments by other validators assigned to the same parachain, including verifying the VRF output.

Once a valid assignment from a peer was received, the validator must wait for the following approval vote within a certain period as described in

Section C.9.13. by orienting itself on its local, tick-based system. If the waiting time after a broadcasted assignment exceeds the specified period,

the validator interprets this behavior as a “no-show”, indicating that more validators should commit on their tranche until enough approval votes have

been collected.

If enough approval votes have been collected as described in Section C.9.13., then assignees of later tranches do not have to start the approval

process. Therefore, this tranche system serves as a mechanism to ensure that enough candidate approvals from a random set of validators are

created without requiring all assigned validators to check the candidate.

Definition 100. Relay VRF Story

Definition 101. Availability Core VRF Assignment

The relay VRF story is an array of random bytes derived from the VRF submitted within the block by the block author. The relay VRF story, T, is

used as input to determine approval voting criteria and generated in the following way:

where

 constructs a VRF transcript (Definition 165).

 is the BABE randomness of the current epoch (Definition 67).

 is the current BABE slot (Definition 50).

 is the current BABE epoch index (Definition 50).

 is the public key of the authority.

T = Transcript b ​, b ​, e ​,A(r s i)

Transcript

b ​r

b ​s

e ​i

A

An availability core VRF assignment is computed by a relay chain validator to determine which availability core (Definition 125) a validator is

assigned to and should vote for approvals. Computing this assignment relies on the VRF mechanism, transcripts, and STROBE operations

described further in Section A.1.3..

The Runtime dictates how many assignments should be conducted by a validator, as specified in the session index, which can be retrieved via

the Runtime API (Section C.9.13.). The amount of assignments is referred to as “samples.” For each iteration of the number of samples, the

validator calculates an individual assignment, , where the little-endian encoded sample number, , is incremented by one. At the beginning of

the iteration, starts at value 0.

The validator executes the following steps to retrieve a (possibly valid) core index:

where is the secret key, is the public key and is the integer 64 encoded as little endian. is the relay VRF story as defined in

Definition 100. Following:

T s

S

t ​ ←1 Transcript ’A&V MOD’()

t ​ ←2 append t ​, ’RC-VRF’,R ​(1 s)

t ​ ←3 append t ​, ’sample’, s(2)

t ​ ←4 append t ​, ’vrf-nm-pk’, p ​(3 k)

t ​ ←5 meta-ad t ​, ’VRFHash’, False(4)

t ​ ←6 meta-ad t ​, 64 ​, True(5 le)

i ← prf t ​, False(6)

o = s ​ ⋅k i

s ​k p ​k 64 ​le R ​s

https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-relay-vrf-story

Definition 102. Delayed Availability Core VRF Assignment

where is the integer 4 encoded as little endian, is the 4-byte challenge interpreted as a little endian encoded interger and is the number

of availability cores used during the active session, as defined in the session info retrieved by the Runtime API (Section C.9.13.). The resulting

integer, , indicates the parachain Id (Definition 124). If the parachain Id doesn’t exist, as can be retrieved by the Runtime API (Section C.9.3.),

the validator discards that value and continues with the next iteration. If the Id does exist, the validator continues with the following steps:

where is described in Definition 162. The resulting values of , and are used to construct an assignment certificate (Definition

103) of kind 0.

t ​ ←1 Transcript ’VRFResult’()

t ​ ←2 append t ​, ”, ’A&V CORE’(1)

t ​ ←3 append t ​, ’vrf-in’, i(2)

t ​ ←4 append t ​, ’vrf-out’, o(3)

t ​ ←5 meta-ad t ​, ”, False(4)

t ​ ←6 meta-ad t ​, 4 ​, True(5 le)

r ← prf t ​, False(6)

c ​ =i rmoda ​c

4 ​le r a ​c

c ​i

t ​ ←1 Transcript ’A&V ASSIGNED’()

t ​ ←2 append t ​, ’core’, c ​(1 i)

p ← dleq_prove t ​, i(2)

dleq_prove o p s

The delayed availability core VRF assignments determined at what point a validator should start the approval process as described in

Section 8.5.2.. Computing this assignment relies on the VRF mechanism, transcripts, and STROBE operations described further in Section

A.1.3..

The validator executes the following steps:

The resulting value is the VRF proof (Definition 161). is described in Definition 162.

The tranche, , is determined as:

t ​ ←1 Transcript ’A&V DELAY’()

t ​ ←2 append t ​, ’RC-VRF’,R ​(1 s)

t ​ ←3 append t ​, ’core’, c ​(2 i)

t ​ ←4 append t ​, ’vrf-nm-pk’, p ​(3 k)

t ​ ←5 meta-ad t ​, ’VRFHash’, False(4)

t ​ ←6 meta-ad t ​, 64 ​, True(5 le)

i ← prf t ​, False(6)

o = s ​ ⋅k i

p ← dleq_prove t ​, i(6)

p dleq_prove

d

t ​ ←1 Transcript ’VRFResult’()

t ​ ←2 append t ​, ”, ’A&V TRANCHE’(1)

t ​ ←3 append t ​, ’vrf-in’, i(2)

t ​ ←4 append t ​, ’vrf-out’, o(3)

t ​ ←5 meta-ad t ​, ”, False(4)

t ​ ←6 meta-ad t ​, 4 ​, True(5 le)

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove
https://spec.polkadot.network/chapter-anv#defn-assignment-cert
https://spec.polkadot.network/chapter-anv#sect-tranches
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-proof
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove

Definition 103. Assignment Certificate

8.6. Disputes

8.7. Network Messages
The availability and validity process requires certain network messages to be exchanged between validators and collators.

8.7.1. Notification Messges

The notification messages are exchanged between validators, including messages sent by collators to validators. The protocol messages are

exchanged based on a streaming notification substream (Section 4.5.). The messages are SCALE encoded (Section A.2.2.).

Definition 104. Validator Protocol Message

where

 is the number of delayed tranches by total as specified by the session info, retrieved via the Runtime API (Section C.9.13.).

 is the zeroth delay tranche width as specified by the session info, retrieved via the Runtime API (Section C.9.13.).

The resulting tranche, , cannot be less than . If the tranche is less than , then . The resulting values , and are used to construct

an assignment certificate (\<Definition 103) of kind 1.

c ← prf t ​, False(6)

d = dmod d ​ + d ​ −(c z) d ​z

d ​c

d ​z

n 0 0 d = 0 o p c ​i

The Assignment Certificate proves to the network that a Polkadot validator is assigned to an availability core and is, therefore, qualified for

the approval of candidates, as clarified in Definition 101. This certificate contains the computed VRF output and is a data structure of the

following format:

where indicates the kind of the certificate, respectively the value 0 proves the availability core assignment (Definition 101), followed by the

sample number , and the value 1 proves the delayed availability core assignment (Definition 102), followed by the core index (Section

C.9.3.). is the VRF output and is the VRF proof.

k, o, p()

k = ​ ​ ​{0
1

→
→

s

c ​i

k

s c ​i

o p

INFO

Disputes are not documented yet.

The validator protocol message is a varying datatype used by validators to broadcast relevant information about certain steps in the A&V

process. Specifically, this includes the backing process (Section 8.2.) and the approval process (Section 8.5.). The validator protocol message,

, is a varying datatype of the following format:

where

 is a bitfield distribution message (Definition 108).

 is a statement distribution message (Definition 107).

M

M = ​ ​ ​ ​⎩⎨
⎧1

3
4

→
→
→

M ​f

M ​s

M ​a

M ​f

M ​s

https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-session-info
https://spec.polkadot.network/chapter-anv#defn-assignment-cert
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#defn-availability-core-vrf-assignment
https://spec.polkadot.network/chapter-anv#delayed-availability-core-vrf-assignment
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://spec.polkadot.network/chapter-anv#net-msg-bitfield-dist-msg
https://spec.polkadot.network/chapter-anv#net-msg-statement-distribution

Definition 105. Collation Protocol Message

Definition 106. Collator Message

Definition 107. Statement Distribution Message

Definition 108. Bitfield Distribution Message

 is a approval distribution message (Definition 109).M ​a

The collation protocol message, M, is a varying datatype of the following format:

where is the collator message (Definition 106).

M = ​ ​ ​{0 → M ​c

M ​c

The collator message is sent as part of the collator protocol message (Definition 105). The collator message, , is a varying datatype of the

following format:

where

 is a varying datatype where 0 indicates the intent to advertise a collation and 1 indicates the advertisement of a collation to a validator.

4 indicates that a collation sent to a validator was seconded.

 is the public key of the collator.

 is the parachain Id (Definition 124).

 is the signature of the collator using the PeerId of the collators node.

 is the hash of the parachain block (Definition 122).

 is a full statement (Definition 92).

M

M = ​ ​ ​ ​⎩⎨
⎧0

1
4

→
→
→

C ​,P ​,C ​(i i s)
H

B ​,S(h)

M

C ​i

P ​i

C ​s

H

S

The statement distribution message is sent as part of the validator protocol message (Definition 105) indicates the validity vote of a validator

for a given candidate, described further in Section 8.2.1.. The statement distribution message, , is of varying type of the following format:

where

 is a varying datatype where 0 indicates a signed statement and 1 contains metadata about a seconded statement with a larger payload,

such as a runtime upgrade. The candidate itself can be fetched via the request/response message (Definition 118).

 is the hash of the relay chain parent, indicating the state this message is for.

 is a full statement (Definition 92).

 is the validator index in the authority set (Definition 33) that signed this message.

 is the signature of the validator.

M

M = ​ ​ ​{0
1

→
→

B ​,S(h)
S ​m

S ​ =m B ​,C ​,A ,A ​(h h i s)

M

B ​h

S

A ​i

A ​s

https://spec.polkadot.network/chapter-anv#net-msg-approval-distribution
https://spec.polkadot.network/chapter-anv#net-msg-collator-message
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chapter-anv#net-msg-collator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-candidate-statements
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-request
https://spec.polkadot.network/chapter-anv#defn-statement
https://spec.polkadot.network/chap-sync#defn-authority-list

Definition 109. Approval Distribution Message

8.7.2. Request & Response

The request & response network messages are sent and received between peers in the Polkadot network, including collators and non-validator

nodes. Those messages are conducted on the request-response substreams (Section 4.5.). The network messages are SCALE encoded as

described in Section ?.

The bitfield distribution message is sent as part of the validator protocol message (Definition 104) and indicates the availability vote of a

validator for a given candidate, described further in Section 8.4.1.. This message is sent in the form of a validator protocol message (Definition

104). The bitfield distribution message, , is a datastructure of the following format:

where

 is the hash of the relay chain parent, indicating the state this message is for.

 is the bitfield array (Definition 131).

 is the validator index in the authority set (Definition 33) that signed this message.

 is the signature of the validator.

M

M = ​ ​ ​{0 → B ​,P(h)

P = d,A ​,A ​(i s)

B ​h

d

A ​i

A ​s

The approval distribution message is sent as part of the validator protocol message (Definition 104) and indicates the approval vote of a

validator for a given candidate, described further in Section 8.5.1.. The approval distribution message, , is a varying datatype of the following

format:

where

 is a varying datatype where 0 indicates assignments for candidates in recent, unfinalized blocks and 1 indicates approvals for

candidates in some recent, unfinalized block.

 is an assignment criterion that refers to the candidate under which the assignment is relevant by the block hash.

 is an unsigned 32-bit integer indicating the index of the candidate, corresponding to the order of the availability cores (Section C.9.3.).

 is the relay chain block hash where the candidate appears.

 is the authority set Id (Definition 69) of the validator that created this message.

 is the signature of the validator issuing this message.

 is the certification of the assignment.

 is a varying datatype where 0 indicates an assignment based on the VRF that authorized the relay chain block where the candidate was

included, followed by a sample number, . 1 indicates an assignment story based on the VRF that authorized the relay chain block where

the candidate was included combined with the index of a particular core. This is described further in Section 8.5..

 is a VRF output and its corresponding proof.

M

M = ​ ​ ​{0
1

→
→

C ​I ​ ​ … C, I ​((,)0 ()n)
V ​, …V ​(0 n)

C = B ​,A ​, c ​(h i a)

c ​ =a c ​,P ​,P ​(k o p)

c ​ =k ​{0 → s

1 → i

V = B ​, I,A ​,A ​(h i s)

M

C

I

B ​h

A ​i

A ​s

c ​a

c ​k

s

P ​o P ​p

https://spec.polkadot.network/chap-networking#sect-connection-establishment
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-availability-votes
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#net-msg-validator-protocol-message
https://spec.polkadot.network/chapter-anv#sect-availability-assignment-criteria
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chapter-anv#sect-approval-voting

Definition 110. PoV Fetching Request

Definition 111. PoV Fetching Response

Definition 112. Chunk Fetching Request

Definition 113. Chunk Fetching Response

Definition 114. Available Data Request

Definition 115. Available Data Response

The PoV fetching request is sent by clients who want to retrieve a PoV block from a node. The request is a data structure of the following

format:

where is the 256-bit hash of the PoV block. The response message is defined in Definition 111.

C ​h

C ​h

The PoV fetching response is sent by nodes to the clients who issued a PoV fetching request (Definition 110). The response, , is a varying

datatype of the following format:

where 0 is followed by the PoV block and 1 indicates that the PoV block was not found.

R

R = ​ ​ ​{0
1

→
→

B

ϕ

The chunk fetching request is sent by clients who want to retrieve chunks of a parachain candidate. The request is a data structure of the

following format:

where is the 256-bit hash of the parachain candidate and is a 32-bit unsigned integer indicating the index of the chunk to fetch. The

response message is defined in Definition 113.

C ​, i(h)

C ​h i

The chunk fetching response is sent by nodes to the clients who issued a chunk fetching request (Definition 112). The response, , is a varying

datatype of the following format:

where 0 is followed by the chunk response, and 1 indicates that the requested chunk was not found. contains the erasure-encoded

chunk of data belonging to the candidate block, , and is that chunks proof in the Merkle tree. Both and are byte arrays of type

.

R

R = ​ ​ ​{0
1

→
→

C ​r

ϕ

C ​ =r c, c ​(p)

C ​r C ​r

c c ​p c c ​p

b ​ … b ​(n m)

The available data request is sent by clients who want to retrieve the PoV block of a parachain candidate. The request is a data structure of the

following format:

where is the 256-bit candidate hash to get the available data for. The response message is defined in Definition 115.

C ​h

C ​h

https://spec.polkadot.network/chapter-anv#net-msg-pov-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-pov-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-chunk-fetching-request
https://spec.polkadot.network/chapter-anv#net-msg-available-data-response

Definition 116. Collation Fetching Request

Definition 117. Collation Fetching Response

Definition 118. Statement Fetching Request

Definition 119. Statement Fetching Response

8.7.2.1. Dispute Request

The dispute request is sent by clients who want to issue a dispute about a candidate. The request, , is a data structure of the following format:

The available data response is sent by nodes to the clients who issued an available data request (Definition 114). The response, , is a varying

datatype of the following format:

where 0 is followed by the available data, , and 1 indicates the the requested candidate hash was not found. is the PoV block (Definition

122) and is the persisted validation data (Definition 220).

R

R = ​ ​ ​{0
1

→
→

A

ϕ

A = P ​,D ​(ov pv)

A P ​ov

D ​pv

The collation fetching request is sent by clients who want to retrieve the advertised collation at the specified relay chain block. The request is a

data structure of the following format:

where is the hash of the relay chain block and is the parachain Id (Definition 124). The response message is defined in Definition 117.

B ​,P ​(h id)

B ​h P ​id

The collation fetching response is sent by nodes to the clients who issued a collation fetching request (Definition 116). The response, , is a

varying datatype of the following format:

where is followed by the candidate receipt (Definition 94), , as and the PoV block (Definition 122), . This type does not notify the client

about a statement that was not found.

R

R = ​ ​ ​{0 → C ​,B(r)

0 C ​r B

The statement fetching request is sent by clients who want to retrieve statements about a given candidate. The request is a data structure of

the following format:

where is the hash of the relay chain parent and is the candidate hash that was used to create a committed candidate receipt (Definition

95). The response message is defined in Definition 119.

B ​,C ​(h h)

B ​h C ​h

The statement fetching response is sent by nodes to the clients who issued a collation fetching request (Definition 118). The response, , is a

varying datatype of the following format:

where is the committed candidate receipt (Definition 95). No response is returned if no statement is found.

R

R = ​ ​ ​{0 → C ​r

C ​r

D ​r

D ​ =r C ​,S ​, I ​,V ​(r i v v)

I ​ =v A ​,A ​, k ​(i s i)

https://spec.polkadot.network/chapter-anv#net-msg-available-data-request
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#net-msg-collation-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-collation-fetching-request
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-response
https://spec.polkadot.network/chapter-anv#net-msg-statement-fetching-request
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt

where

 is the candidate that is being disputed. The structure is a candidate receipt (Definition 94).

 is an unsigned 32-bit integer indicating the session index the candidate appears in.

 is the invalid vote that makes up the request.

 is the valid vote that makes this dispute request valid.

 is an unsigned 32-bit integer indicating the validator index in the authority set (Definition 33).

 is the signature of the validator.

 is a varying datatype and implies the dispute statement. 0 indicates an explicit statement.

 is a varying datatype and implies the dispute statement.

 indicates an explicit statement.

 indicates a seconded statement on a candidate, , from the backing phase. is the hash of the candidate.

 indicates a valid statement on a candidate, , from the backing phase. is the hash of the candidate.

 indicates an approval vote from the approval checking phase.

The response message is defined in Section 8.7.2.2..

8.7.2.2. Dispute Response

The dispute response is sent by nodes to the clients who issued a dispute request (Section 8.7.2.1.). The response, , is a varying type of the

following format:

where indicates that the dispute was successfully processed.

8.8. Definitions
Definition 120. Collator

Definition 121. Candidate

Definition 122. Parachain Block

V ​ =v A ​,A ​, k ​(i s v)

k ​ =i ​ ​ ​{0 → ϕ

k ​ =v ​ ​ ​ ​⎩⎨
⎧0

1
2
3

→
→
→
→

ϕ

C ​h

C ​h

ϕ

C ​r

S ​i

I ​v

V ​v

A ​i

A ​s

k ​i

k ​v

0

1 C ​h C ​h

2 C ​h C ​h

3

R

R = ​ ​ ​{0 → ϕ

0

A collator is a parachain node that sends parachain blocks, known as candidates (Definition 121), to the relay chain validators. The relay chain

validators are not concerned with how the collator works or how it creates candidates.

A candidate is a submitted parachain block (Definition 122) to the relay chain validators. A parachain block stops being referred to as a

candidate as soon it has been finalized.

https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chapter-anv#net-msg-dispute-response
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request
https://spec.polkadot.network/chapter-anv#defn-candidate
https://spec.polkadot.network/chapter-anv#defn-para-block

Definition 123. Head Data

Definition 124. Parachain Id

Definition 125. Availability Core

Definition 126. Validator Groups

Definition 127. Upward Message

Definition 128. Downward Message

Definition 129. Outbound HRMP Message

Definition 130. Inbound HRMP Message

A parachain block or a Proof-of-Validity block (PoV block) contains the necessary data for the parachain-specific state transition logic. Relay

chain validators are not concerned with the inner structure of the block and treat it as a byte array.

The head data contains information about a parachain block (Definition 122). The head data is returned by executing the parachain Runtime,

and relay chain validators are not concerned with its inner structure and treat it as a byte array.

The Parachain Id is a unique, unsigned 32-bit integer which serves as an identifier of a parachain, assigned by the Runtime.

Availability cores are slots used to process parachains. The Runtime assigns each parachain to an availability core, and validators can fetch

information about the cores, such as parachain block candidates, by calling the appropriate Runtime API (Section C.9.3.). Validators are not

concerned with the internal workings from the Runtimes perspective.

Validator groups indicate which validators are responsible for creating backable candidates for parachains (Section 8.2.), and are assigned by

the Runtime (Section C.9.2.). Validators are not concerned with the internal workings from the Runtimes perspective. Collators can use this

information for submitting blocks.

An upward message is an opaque byte array sent from a parachain to a relay chain.

A downward message is an opaque byte array received by the parachain from the relay chain.

An outbound HRMP message (Horizontal Relay-routed Message Passing) is sent from the perspective of a sender of a parachain to another

parachain by passing it through the relay chain. It’s a data structure of the following format:

where is the recipient Id (Definition 124) and is an upward message (Definition 127).

I,M()

I M

An inbound HRMP message (Horizontal Relay-routed Message Passing) is seen from the perspective of a recipient parachain sent from another

parachain by passing it through the relay chain. It’s a data structure of the following format:

https://spec.polkadot.network/chapter-anv#defn-para-block
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#sect-candidate-backing
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validator-groups
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-upward-message

Definition 131. Bitfield Array

where is the unsigned 32-bit integer indicating the relay chain block number at which the message was passed down to the recipient

parachain and is a downward message (Definition 128).

N ,M()

N

M

A bitfield array contains single-bit values, which indicates whether a candidate is available. The number of items is equal to the number of

availability cores (Definition 125), and each bit represents a vote on the corresponding core in the given order. Respectively, if the single bit

equals 1, then the Polkadot validator claims that the availability core is occupied, there exists a committed candidate receipt (Definition 95) and

that the validator has a stored chunk of the parachain block (Definition 122).

https://spec.polkadot.network/chapter-anv#defn-downward-message
https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/chapter-anv#defn-committed-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-para-block

Polkadot Runtime
Description of various useful Runtime internals

📄️ 9. Extrinsics

9.1. Introduction

📄️ 10. Weights

10.1. Motivation

📄️ 11. Consensus

11.1. BABE digest messages

📄️ 12. Metadata

The runtime metadata structure contains all the information necessary on how to interact with the Polkadot runtime. Considering that Polkadot runtimes are upgradabl…

https://spec.polkadot.network/id-extrinsics
https://spec.polkadot.network/id-weights
https://spec.polkadot.network/id-consensus
https://spec.polkadot.network/sect-metadata

9. Extrinsics

9.1. Introduction
An extrinsic is a SCALE encoded array consisting of a version number, signature, and varying data types indicating the resulting Runtime function to

be called, including the parameters required for that function to be executed.

9.2. Preliminaries
Definition 132. Extrinsic

Definition 133. Extrinsic Version

9.3. Extrinsics Body

9.3.1. Version 4

Version 4 of the Polkadot extrinsic format is defined as follows:

where

: the 32-byte address of the sender (Definition 134).

: the signature of the sender (Definition 135).

: the extra data for the extrinsic (Definition 136).

: the indicator of the Polkadot module (Definition 137).

: the indicator of the function of the Polkadot module (Definition 138).

Definition 134. Extrinsic Address

Definition 135. Extrinsic Signature

An extrinsic , , is a tuple consisting of the extrinsic version, (Definition 133), and the body of the extrinsic, .

The value of varies for each version. The current version 4 is described in Section 9.3.1..

tx T ​v T ​b

tx = T ​,T ​(v b)

T ​b

 is a 8-bit bitfield and defines the extrinsic version. The required format of an extrinsic body, , is dictated by the Runtime. Older or

unsupported versions are rejected.

The most significant bit of indicates whether the transaction is signed () or unsigned (). The remaining 7-bits represent the version

number. As an example, for extrinsic format version 4, a signed extrinsic represents as 132 while an unsigned extrinsic represents it as 4 .

T ​v T ​b

T ​v 1 0
T ​v

T ​ =b A ​,Sig,E,M ​,F ​ m(i i i())

A ​i

Sig

E

M ​i

F ​ mi()

Account Id, , is the 32-byte address of the sender of the extrinsic as described in the external SS58 address format.A ​i

https://spec.polkadot.network/id-extrinsics#defn-extrinsic-address
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-signature
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/id-extrinsics#defn-module-indicator
https://spec.polkadot.network/id-extrinsics#defn-function-indicator
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-version
https://spec.polkadot.network/id-extrinsics#sect-version-four
https://github.com/paritytech/substrate/wiki/External-Address-Format-(SS58)

Definition 136. Extra Data

Definition 137. Module Indicator

The signature, , is a varying data type indicating the used signature type, followed by the signature created by the extrinsic author. The

following types are supported:

Signature types vary in size, but each individual type is always fixed-size and therefore does not contain a length prefix. Ed25519 and

Sr25519 signatures are 512-bit while Ecdsa is 520-bit, where the last 8 bits are the recovery ID.

The signature is created by signing payload .

where

: the module indicator (Definition 137).

: the function indicator of the module (Definition 138).

: the extra data (Definition 136).

: a UINT32 containing the specification version (spec_version) of the Runtime (Section C.4.1.), which can be updated and is therefore
subject to change.

: a UINT32 containing the transaction version (transaction_version) of the Runtime (Section C.4.1.), which can be updated and is
therefore subject to change.

: a 32-byte array containing the genesis hash.

: a 32-byte array containing the hash of the block which starts the mortality period, as described in Definition 139.

Sig

Sig := ​ ​ ​⎩⎨
⎧0,

1,
2,

Ed25519, followed by: (b ​, … , b ​)0 63

Sr25519, followed by: (b ​, … , b)0 63

Ecdsa, followed by: (b ​, … , b ​)0 64

P

​ ​

P

Raw

:= ​ ​{Raw,
Blake2(Raw),

if ∥Raw∥ ≤ 256
if ∥Raw∥ > 256

:= (M ​,F ​(m),E,R ​,F ​,H ​(G),H ​(B))i i v v h h

M ​i

F ​ mi()

E

R ​v

F ​v

H ​ Gh()

H ​ Bh()

Extra data, , is a tuple containing additional metadata about the extrinsic and the system it is meant to be executed in.

where

: contains the SCALE encoded mortality of the extrinsic (Definition 139).

: a compact integer containing the nonce of the sender. The nonce must be incremented by one for each extrinsic created, otherwise,

the Polkadot network will reject the extrinsic.

: a compact integer containing the transactor pay including tip.

E

E = T ​,N ,P ​(mor t)

T ​mor

N

P ​t

 is an indicator for the Runtime to which Polkadot module, , the extrinsic should be forwarded to.

 is a varying data type pointing to every module exposed to the network.

M ​i m

M ​i

⎧

https://spec.polkadot.network/id-extrinsics#defn-module-indicator
https://spec.polkadot.network/id-extrinsics#defn-function-indicator
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-mortality
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-mortality

Definition 138. Function Indicator

9.3.2. Mortality

Definition 139. Extrinsic Mortality

9.3.2.1. Example

The extrinsic author choses at block 10'000 , resulting with . The extrinsic is then valid for blocks ranging from 10'000 to

10'256 .

9.3.2.2. Encoding

 refers to the SCALE encoded form of type and . is the size of two bytes if the extrinsic is considered mortal, or simply one

bytes with a value equal to zero if the extrinsic is considered immortal.

M ​ :=i ​ ​ ​

⎩
⎨
⎧0,

1,
…
7,
…

System
Utility

Balances

 is a tuple which contains an indicator, , for the Runtime to which function within the Polkadot module, , the extrinsic should be

forwarded to. This indicator is followed by the concatenated and SCALE encoded parameters of the corresponding function, .

The value of varies for each Polkadot module since every module offers different functions. As an example, the Balances module has the

following functions:

F ​ mi() m ​i m

params

F ​ m =i() m ​, params(i)

m ​i

Balances ​ :=i ​ ​ ​

⎩
⎨
⎧0,

1,
2,
3,
…

transfer
set_balance
force_transfer
transfer_keep_alive

Extrinsic mortality is a mechanism which ensures that an extrinsic is only valid within a certain period of the ongoing Polkadot lifetime.

Extrinsics can also be immortal, as clarified in Section 9.3.2.2..

The mortality mechanism works with two related values:

: the period of validity in terms of block numbers from the block hash specified as in the payload (Definition 135). The

requirement is and must be the power of two, such as 32 , 64 , 128 , etc.

: the phase in the period that this extrinsic’s lifetime begins. This value is calculated with a formula, and validators can use this value

in order to determine which block hash is included in the payload. The requirement is .

In order to tie a transaction’s lifetime to a certain block () after it was issued, without wasting precious space for block hashes, block

numbers are divided into regular periods and the lifetime is instead expressed as a "phase" () from these regular boundaries:

 and are then included in the extrinsic, as clarified in Definition 136, in the SCALE encoded form of (Section 9.3.2.2.).

Polkadot validators can use to figure out the block hash included in the payload, which will therefore result in a valid signature if the

extrinsic is within the specified period or an invalid signature if the extrinsic "died".

M ​per H ​ Bh()
M ​ ≥per 4 M ​per

M ​pha

M ​ <pha M ​per

H ​ Bi()
M ​pha

M ​ =pha H ​ B mod M ​i() per

M ​per M ​pha T ​mor

M ​pha

M ​ =per 256 M ​ =pha 16

T ​mor M ​per M ​pha T ​mor

T ​ =mor Enc ​ M ​,M ​SC(per pha)

https://spec.polkadot.network/id-extrinsics#sect-mortality-encoding
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-signature
https://spec.polkadot.network/id-extrinsics#defn-extra-data
https://spec.polkadot.network/id-extrinsics#sect-mortality-encoding

The SCALE encoded representation of mortality deviates from most other types, as it’s specialized to be the smallest possible value, as

described in Encode Mortality and Decode Mortality.

If the extrinsic is immortal, specify a single byte with a value equal to zero.

T ​mor

Algorithm 25. Encode Mortality

Algorithm Encode Mortality

Require:
return
init Limit()
init Limit(TZ())
init
return

Algorithm 26. Decode Mortality

Algorithm Decode Mortality

Require:
return
init
init
init Limit()
init
return

where

: the first byte of .

: the second byte of .

Limit(, ,): Ensures that is between and . If or is defined as , then there is no requirement for

the specified minimum/maximum.

TZ(): returns the number of trailing zeros in the binary representation of . For example, the binary representation of 40 is 0010
1000 , which has three trailing zeros.

: performs a binary right shift operation.

: performs a binary left shift operation.

 : performs a bitwise OR operation.

M ​,M ​per pha

1: 0 if extrinsic is immortal

2: factor = M ​ ≫per 12, 1,ϕ
3: left = M ​per −1, 1, 15
4: right = ​ ≪

factor

M ​pha 4
5: left∣right

T ​mor

1: Immortal if T ​ =mor
b0 0

2: enc = T ​ +mor
b0 (T ​ ≪mor

b1 8)
3: M ​ =per 2 ≪ (enc mod (1 ≪ 4))
4: factor = M ​ ≫per 12, 1,ϕ
5: M ​ =pha (enc ≫ 4) ∗ factor
6: (M ​,M ​)per pha

T ​

mor{ }
b0 T ​mor

T ​mor{ }
b1 T ​mor

num min max num min max min max ϕ

num num

≫

≪

∣

https://spec.polkadot.network/id-extrinsics#algo-mortality-encode
https://spec.polkadot.network/id-extrinsics#algo-mortality-decode

10. Weights

10.1. Motivation
The Polkadot network, like any other permissionless system, needs to implement a mechanism to measure and limit the usage in order to establish

an economic incentive structure, prevent network overload, and mitigate DoS vulnerabilities. In particular, Polkadot enforces a limited time window

for block producers to create a block, including limitations on block size, which can make the selection and execution of certain extrinsics too

expensive and decelerate the network.

In contrast to some other systems, such as Ethereum, which implement fine measurement for each executed low-level operation by smart contracts,

known as gas metering, Polkadot takes a more relaxed approach by implementing a measuring system where the cost of the transactions (referred

to as ’extrinsics’) are determined before execution and are known as the weight system.

The Polkadot weight system introduces a mechanism for block producers to measure the cost of running the extrinsics and determine how "heavy"

it is in terms of execution time. Within this mechanism, block producers can select a set of extrinsics and saturate the block to its fullest potential

without exceeding any limitations (as described in Section 10.2.1.). Moreover, the weight system can be used to calculate a fee for executing each

extrinsics according to its weight (as described in Section 10.6.1.).

Additionally, Polkadot introduces a specified block ratio (as defined in Section 10.2.1.), ensuring that only a certain portion of the total block size gets

used for regular extrinsics. The remaining space is reserved for critical, operational extrinsics required for the functionality of Polkadot itself.

To begin, we introduce in Section 10.2. the assumption upon which the Polkadot transaction weight system is designed. In Section 10.2.1., we

discuss the limitation Polkadot needs to enforce on the block size. In Section 10.3., we describe in detail the procedure upon which the weight of any

transaction should be calculated. In Section 10.5., we present how we apply this procedure to compute the weight of particular runtime functions.

10.2. Assumptions
In this section, we define the concept of weight, and we discuss the considerations that need to be accounted for when assigning weight to

transactions. These considerations are essential in order for the weight system to deliver its fundamental mission, i.e. the fair distribution of network

resources and preventing a network overload. In this regard, weights serve as an indicator on whether a block is considered full and how much

space is left for remaining, pending extrinsics. Extrinsics that require too many resources are discarded. More formally, the weight system should:

prevent the block from being filled with too many extrinsics

avoid extrinsics where its execution takes too long, by assigning a transaction fee to each extrinsic proportional to their resource consumption.

These concepts are formalized in Definition 140 and Definition 143:

Definition 140. Block Length

Definition 141. Target Time per Block

Definition 142. Block Target Time

For a block with and the block length of , , is defined as the amount of raw bytes of .B Head B() Body B() B Len B() B

Ṯargeted time per block denoted by implies the amount of seconds that a new block should be produced by a validator. The transaction

weights must consider in order to set restrictions on time-intensive transactions in order to saturate the block to its fullest potential until

 is reached.

T B()
T B()

T B()

Available block ration reserved for normal, noted by , is defined as the maximum weight of none-operational transactions in the Body of

 divided by .

R B()
B Len B()

https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-fee-calculation
https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-assumptions
https://spec.polkadot.network/id-weights#sect-limitations
https://spec.polkadot.network/id-weights#sect-runtime-primitives
https://spec.polkadot.network/id-weights#sect-practical-examples
https://spec.polkadot.network/id-weights#defn-block-length
https://spec.polkadot.network/id-weights#defn-polkadot-block-limits

Definition 143. Block Limits

Definition 144. Weight Function

10.2.1. Limitations

In this section, we discuss how applying the limitation defined in Definition 143 can be translated to limitation . In order to be able to translate

those into concrete numbers, we need to identify an arbitrary maximum weight to which we scale all other computations. For that, we first define the

block weight and then assume a maximum on its block length in Definition 145:

Definition 145. Block Weight

P̱olkadot block limits, as defined here, should be respected by each block producer for the produced block to be deemed valid:

 Bytes

 seconds

B

Len B ≤() 5 × 1 024 ×′ 1 024 =′ 5 242 880′ ′

T B =() 6

R B ≤() 0.75

The P̱olkadot transaction weight function denoted by as follows:

where is a non-negative integer representing the weight of the extrinsic . We define the weight of all inherent extrinsics as defined in the

Section 2.3.3. to be equal to 0. We extend the definition of function to compute the weight of the block as sum of weight of all extrinsics it

includes:

In the remainder of this section, we discuss the requirements to which the weight function needs to comply to.

Computations of function must be determined before execution of that .

Due to the limited time window, computations of must be done quickly and consume few resources themselves.

 must be self contained and must not require I/O on the chain state. must depend solely on the Runtime function representing

and its parameters.

Heuristically, "heaviness" corresponds to the execution time of an extrinsic. In that way, the value for various extrinsics should be

proportional to their execution time. For example, if Extrinsic A takes three times longer to execute than Extrinsic B, then Extrinsic A should

roughly weighs 3 times of Extrinsic B. Or:

Nonetheless, can be manipulated depending on the priority of the chain is supposed to endorse.

W

​ ​

W

W

: E → N
: E ↦ w

w E

W

​ ​

W

W

: B → N

: B ↦ ​(W (E))
E∈B

∑

W E() E

W

W W E() E

W

W A ≈() 3 × W B()

W E() E

W

We define the block weight of block , formally denoted as , to be:

We require that:

B W B()

W B =() ​ W E ​

n=0{ }

∑
E∣ ∣

((n))

W B <() 2 000 000 000 000′ ′ ′ ′

https://spec.polkadot.network/id-weights#defn-polkadot-block-limits
https://spec.polkadot.network/id-weights#defn-block-weight
https://spec.polkadot.network/chap-state#sect-inherents

The weights must fulfill the requirements as noted by the fundamentals and limitations and can be assigned as the author sees fit. As a simple

example, consider a maximum block weight of 1’000’000’000, an available ratio of 75%, and a targeted transaction throughput of 500 transactions.

We could assign the (average) weight for each transaction at about 1’500’000. Block producers have an economic incentive to include as many

extrinsics as possible (without exceeding limitations) into a block before reaching the targeted block time. Weights give indicators to block

producers on which extrinsics to include in order to reach the blocks fullest potential.

10.3. Calculation of the weight function
In order to calculate weight of block , , one needs to evaluate the weight of each transaction included in the block. Each transaction causes

the execution of certain Runtime functions. As such, to calculate the weight of a transaction, those functions must be analyzed in order to determine

parts of the code which can significantly contribute to the execution time and consume resources such as loops, I/O operations, and data

manipulation. Subsequently, the performance and execution time of each part will be evaluated based on variety of input parameters. Based on

those observations, weights are assigned Runtime functions or parameters which contribute to long execution times. These sub component of the

code are discussed in Section 10.4.1..

The general algorithm to calculate is described in the Section 10.4..

10.4. Benchmarking
Calculating the extrinsic weight solely based on the theoretical complexity of the underlying implementation proves to be too complicated and

unreliable at the same time. Certain decisions in the source code architecture, internal communication within the Runtime or other design choices

could add enough overhead to make the asymptotic complexity practically meaningless.

On the other hand, benchmarking an extrinsics in a black-box fashion could (using random parameters) most certainly results in missing corner

cases and worst case scenarios. Instead, we benchmark all available Runtime functions which are invoked in the course of execution of extrinsics

with a large collection of carefully selected input parameters and use the result of the benchmarking process to evaluate .

In order to select useful parameters, the Runtime functions have to be analyzed to fully understand which behaviors or conditions can result in

expensive execution times, which is described closer in Section 10.4.1.. Not every possible benchmarking outcome can be invoked by varying input

parameters of the Runtime function. In some circumstances, preliminary work is required before a specific benchmark can be reliably measured,

such as creating certain preexisting entries in the storage or other changes to the environment.

The Practical Examples (Section 10.5.) covers the analysis process and the implementation of preliminary work in more detail.

10.4.1. Primitive Types

The Runtime reuses components, known as "primitives", to interact with the state storage. The execution cost of those primitives can be measured

and a weight should be applied for each occurrence within the Runtime code.

For storage, Polkadot uses three different types of storage types across its modules, depending on the context:

Value: Operations on a single value. The final key-value pair is stored under the key:

Map: Operations on multiple values, datasets, where each entry has its corresponding, unique key. The final key-value pair is stored under the

key:

Double map: Just like Map, but uses two keys instead of one. This type is also known as "child storage", where the first key is the "parent key"

and the second key is the "child key". This is useful in order to scope storage entries (child keys) under a certain context (parent key), which

is arbitrary. Therefore, one can have separated storage entries based on the context. The final key-value pair is stored under the key:

It depends on the functionality of the Runtime module (or its sub-processes, rather) which storage type to use. In some cases, only a single value is

required. In others, multiple values need to be fetched or inserted from/into the database.

B W B()

W E()

W E()

 hash(module_prefix) + hash(storage_prefix)

 hash(module_prefix) + hash(storage_prefix) + hash(encode(key))

 hash(module_prefix) + hash(storage_prefix)
 + hash(encode(key1)) + hash(encode(key2))

https://spec.polkadot.network/id-weights#sect-primitive-types
https://spec.polkadot.network/id-weights#sect-benchmarking
https://spec.polkadot.network/id-weights#sect-primitive-types
https://spec.polkadot.network/id-weights#sect-practical-examples

Those lower-level types get abstracted over in each individual Runtime module using the decl_storage! macro. Therefore, each module specifies

its own types that are used as input and output values. The abstractions do give indicators on what operations must be closely observed and where

potential performance penalties and attack vectors are possible.

10.4.1.1. Considerations

The storage layout is mostly the same for every primitive type, primarily differentiated by using special prefixes for the storage key. Big differences

arise on how the primitive types are used in the Runtime function, on whether single values or entire datasets are being worked on. Single value

operations are generally quite cheap and its execution time does not vary depending on the data that’s being processed. However, excessive

overhead can appear when I/O operations are executed repeatedly, such as in loops. Especially, when the amount of loop iterations can be

influenced by the caller of the function or by certain conditions in the state storage.

Maps, in contrast, have additional overhead when inserting or retrieving datasets, which vary in sizes. Additionally, the Runtime function has to

process each item inside that list.

Indicators for performance penalties:

Fixed iterations and datasets - Fixed iterations and datasets can increase the overall cost of the Runtime functions, but the execution time

does not vary depending on the input parameters or storage entries. A base Weight is appropriate in this case.

Adjustable iterations and datasets - If the amount of iterations or datasets depends on the input parameters of the caller or specific entries in

storage, then a certain weight should be applied for each (additional) iteration or item. The Runtime defines the maximum value for such cases.

If it doesn’t, it unconditionally has to and the Runtime module must be adjusted. When selecting parameters for benchmarking, the benchmarks

should range from the minimum value to the maximum value, as described in Definition 146.

Input parameters - Input parameters that users pass on to the Runtime function can result in expensive operations. Depending on the data

type, it can be appropriate to add additional weights based on certain properties, such as data size, assuming the data type allows varying

sizes. The Runtime must define limits on those properties. If it doesn’t, it unconditionally has to, and the Runtime module must be adjusted.

When selecting parameters for benchmarking, the benchmarks should range from the minimum values to the maximum value, as described in

paragraph Definition 146.

Definition 146. Maximum Value

10.4.2. Parameters

The input parameters highly vary depending on the Runtime function and must therefore be carefully selected. The benchmarks should use input

parameters which will most likely be used in regular cases, as intended by the authors, but must also consider worst-case scenarios and inputs that

might decelerate or heavily impact the performance of the function. The input parameters should be randomized in order to cause various effects in

behaviors on certain values, such as memory relocations and other outcomes that can impact performance.

It’s not possible to benchmark every single value. However, one should select a range of inputs to benchmark, spanning from the minimum value to

the maximum value, which will most likely exceed the expected usage of that function. This is described in more detail in Section 10.4.1.1.. The

benchmarks should run individual executions/iterations within that range, where the chosen parameters should give insight on the execution time.

Selecting imprecise parameters or too extreme ranges might indicate an inaccurate result of the function as it will be used in production. Therefore,

when a range of input parameters gets benchmarked, the result of each individual parameter should be recorded and optionally visualized, then the

necessary adjustment can be made. Generally, the worst-case scenario should be assigned as the weight value for the corresponding runtime

function.

Additionally, given the distinction between theoretical and practical usage, the author reserves the right to make adjustments to the input

parameters and assign weights according to the observed behavior of the actual, real-world network.

10.4.2.1. Weight Refunds

When assigning the final weight, the worst-case scenario of each runtime function should be used. The runtime can then additional "refund" the

amount of weights which were overestimated once the runtime function is actually executed.

The Polkadot runtime only returns weights if the difference between the assigned weight and the actual weight calculated during execution is

greater than 20%.

What the maximum value should be really depends on the functionality that the Runtime function is trying to provide. If the choice for that value

is not obvious, then it’s advised to run benchmarks on a big range of values and pick a conservative value below the targeted time per
block limit as described in section Section 10.2.1..

https://spec.polkadot.network/id-weights#defn-max-value
https://spec.polkadot.network/id-weights#defn-max-value
https://spec.polkadot.network/id-weights#sect-primitive-types-considerations
https://spec.polkadot.network/id-weights#sect-limitations

10.4.3. Storage I/O cost

It is advised to benchmark the raw I/O operations of the database and assign "base weights" for each I/O operation type, such as insertion, deletion,

querying, etc. When a runtime function is executed, the runtime can then add those base weights of each used operation in order to calculate the

final weight.

10.4.4. Environment

The benchmarks should be executed on clean systems without interference of other processes or software. Additionally, the benchmarks should be

executed on multiple machines with different system resources, such as CPU performance, CPU cores, RAM, and storage speed.

10.5. Practical examples
This section walks through Runtime functions available in the Polkadot Runtime to demonstrate the analysis process as described in Section 10.4.1..

In order for certain benchmarks to produce conditions where resource heavy computation or excessive I/O can be observed, the benchmarks might

require some preliminary work on the environment, since those conditions cannot be created with simply selected parameters. The analysis process

shows indicators on how the preliminary work should be implemented.

10.5.1. Practical Example #1: request_judgement

In Polkadot, accounts can save information about themselves on-chain, known as the "Identity Info". This includes information such as display name,

legal name, email address and so on. Polkadot offers a set of trusted registrars, entities elected by a Polkadot public referendum, which can verify

the specified contact addresses of the identities, such as Email, and vouch on whether the identity actually owns those accounts. This can be

achieved, for example, by sending a challenge to the specified address and requesting a signature as a response. The verification is done off-chain,

while the final judgement is saved on-chain, directly in the corresponding Identity Info. It’s also noteworthy that Identity Info can contain additional

fields, set manually by the corresponding account holder.

Information such as legal name must be verified by ID card or passport submission.

The function request_judgement from the identity pallet allows users to request judgment from a specific registrar.

req_index : the index which is assigned to the registrar.

max_fee : the maximum fee the requester is willing to pay. The judgment fee varies for each registrar.

Studying this function reveals multiple design choices that can impact performance, as it will be revealed by this analysis.

10.5.1.1. Analysis

First, it fetches a list of current registrars from storage and then searches that list for the specified registrar index.

Then, it searches for the Identity Info from storage, based on the sender of the transaction.

The Identity Info contains all fields that have a data in them, set by the corresponding owner of the identity, in an ordered form. It then proceeds to

search for the specific field type that will be inserted or updated, such as email address. If the entry can be found, the corresponding value is to the

value passed on as the function parameters (assuming the registrar is not "stickied", which implies it cannot be changed). If the entry cannot be

found, the value is inserted into the index where a matching element can be inserted while maintaining sorted order. This results in memory

reallocation, which increases resource consumption.

(func $request_judgement (param $req_index int) (param $max_fee int))

let registrars = <Registrars<T>>::get();
let registrar = registrars.get(reg_index as usize).and_then(Option::as_ref)
 .ok_or(Error::<T>::EmptyIndex)?;

let mut id = <IdentityOf<T>>::get(&sender).ok_or(Error::<T>::NoIdentity)?;

https://spec.polkadot.network/id-weights#sect-primitive-types

In the end, the function deposits the specified max_fee balance, which can later be redeemed by the registrar. Then, an event is created to insert

the Identity Info into storage. The creation of events is lightweight, but its execution is what will actually commit the state changes.

10.5.1.2. Considerations

The following points must be considered:

Varying count of registrars.

Varying count of preexisting accounts in storage.

The specified registrar is searched for in the Identity Info. An identity can be judged by as many registrars as the identity owner issues requests,

therefore increasing its footprint in the state storage. Additionally, if a new value gets inserted into the byte array, memory gets reallocated.

Depending on the size of the Identity Info, the execution time can vary.

The Identity-Info can contain only a few fields or many. It is legitimate to introduce additional weights for changes the owner/sender has

influence over, such as the additional fields in the Identity-Info.

10.5.1.3. Benchmarking Framework

The Polkadot Runtime specifies the MaxRegistrars constant, which will prevent the list of registrars of reaching an undesired length. This value

should have some influence on the benchmarking process.

The benchmarking implementation of for the function can be defined as follows:

Algorithm 27. request_judgement Runtime Function Benchmark

match id.judgements.binary_search_by_key(®_index, |x| x.0) {
 Ok(i) => if id.judgements[i].1.is_sticky() {
 Err(Error::<T>::StickyJudgement)?
 } else {
 id.judgements[i] = item
 },
 Err(i) => id.judgements.insert(i, item),
}

T::Currency::reserve(&sender, registrar.fee)?;
<IdentityOf<T>>::insert(&sender, id);
Self::deposit_event(RawEvent::JudgementRequested(sender, reg_index));

request judgement

Algorithm "request_judgement"` Runtime function benchmark

Ensure:
init
for do

Generate-Registrars()
 Create-Account()

Set-Balance()
 Timer(Request-Judgement(Random()))

Add-To()
end for

 Compute-Weight()
return

where

Generate-Registrars()

Creates a number of registrars and inserts those records into storage.

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index represent- ing the address of an account. This function only creates

an address and does not conduct any I/O.

W

1: collection = {}
2: amount ← 1,MaxRegistrars

3: amount

4: caller ← caller, 1
5: caller, 100
6: time ← amount , 100
7: collection, time
8:

9: W ← collection

10: W

amount

name index

10.5.2. Practical Example #2: payout_stakers

10.5.2.1. Analysis

The function payout_stakers from the staking Pallet can be called by a single account in order to payout the reward for all nominators who back

a particular validator. The reward also covers the validator’s share. This function is interesting because it iterates over a range of nominators, which

varies, and does I/O operations for each of them.

First, this function makes a few basic checks to verify if the specified era is not higher then the current era (as it is not in the future) and is within the

allowed range also known as "history depth", as specified by the Runtime. After that, it fetches the era payout from storage and additionally verifies

whether the specified account is indeed a validator and receives the corresponding "Ledger". The Ledger keeps information about the stash key,

controller key, and other information such as actively bonded balance and a list of tracked rewards. The function only retains the entries of the

history depth and conducts a binary search for the specified era.

The retained claimed rewards are inserted back into storage.

As an optimization, Runtime only fetches a list of the 64 highest-staked nominators, although this might be changed in the future. Accordingly, any

lower-staked nominator gets no reward.

Next, the function gets the era reward points from storage.

Set-Balance(,)

Sets an initial balance for the specified account in the storage state.

Timer()

Measures the time from the start of the specified function to its completion.

Request-Judgement(,)

Calls the corresponding request_judgement Runtime function and passes on the required parameters.

Random()

Picks a random number between 0 and num. This should be used when the benchmark should account for unpredictable values.

Add-To(,)

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst-case scenario should be chosen (the highest

value).

amount balance

function

registrar index max fee

num

collection time

collection

let era_payout = <ErasValidatorReward<T>>::get(&era)
 .ok_or_else(|| Error::<T>::InvalidEraToReward)?;

let controller = Self::bonded(&validator_stash).ok_or(Error::<T>::NotStash)?;
let mut ledger = <Ledger<T>>::get(&controller).ok_or_else(|| Error::<T>::NotController)?;

ledger.claimed_rewards.retain(|&x| x >= current_era.saturating_sub(history_depth));
match ledger.claimed_rewards.binary_search(&era) {
 Ok(_) => Err(Error::<T>::AlreadyClaimed)?,
 Err(pos) => ledger.claimed_rewards.insert(pos, era),
}

<Ledger<T>>::insert(&controller, &ledger);

let exposure = <ErasStakersClipped<T>>::get(&era, &ledger.stash);

After that, the payout is split among the validator and its nominators. The validators receive the payment first, creating an insertion into storage and

sending a deposit event to the scheduler.

Then, the nominators receive their payout rewards. The functions loop over the nominator list, conducting an insertion into storage and a creation of

a deposit event for each of the nominators.

10.5.2.2. Considerations

The following points must be considered:

The Ledger contains a varying list of claimed rewards. Fetching, retaining, and searching through it can affect execution time. The retained list is

inserted back into storage.

Looping through a list of nominators and creating I/O operations for each increases execution time. The Runtime fetches up to 64 nominators.

10.5.2.3. Benchmarking Framework

Definition 147. History Depth

Definition 148. Maximum Nominator Reward

The benchmarking implementation for the function can be defined as follows:

Algorithm 28. payout_stakers Runtime Function Benchmark

let era_reward_points = <ErasRewardPoints<T>>::get(&era);

if let Some(imbalance) = Self::make_payout(
 &ledger.stash,
 validator_staking_payout + validator_commission_payout
) {
 Self::deposit_event(RawEvent::Reward(ledger.stash, imbalance.peek()));
}

for nominator in exposure.others.iter() {
 let nominator_exposure_part = Perbill::from_rational_approximation(
 nominator.value,
 exposure.total,
);

 let nominator_reward: BalanceOf<T> = nominator_exposure_part * validator_leftover_payout;
 // We can now make nominator payout:
 if let Some(imbalance) = Self::make_payout(&nominator.who, nominator_reward) {
 Self::deposit_event(RawEvent::Reward(nominator.who.clone(), imbalance.peek()));
 }
}

H̱istory Depth indicated as MaxNominatorRewardedPerValidator is a fixed constant specified by the Polkadot Runtime which dictates the

number of Eras the Runtime will reward nominators and validators for.

M̱aximum Nominator Rewarded Per Validator indicated as MaxNominatorRewardedPerValidator , specifies the maximum amount of the

highest-staked nominators which will get a reward. Those values should have some influence in the benchmarking process.

payout stakers

Algorithm "payout_stakers"` Runtime function benchmark

Ensure:
init
for do

W

1: collection = {}
2: amount ← 1,MaxNominatorRewardedPerValidator

10.5.3. Practical Example #3: transfer

The function of the balances module is designed to move the specified balance by the sender to the receiver.

10.5.3.1. Analysis

The source code of this function is quite short:

for do
 Generate-Validator()

Validate()
 Generate-Nominators()

for do
Nominate()

end for
 Create-Rewards()

 Timer(Payout-Stakers())
Add-To()

end for
end for

 Compute-Weight()
return

where

Generate-Validator()

Creates a validator with some unbonded balances.

Validate()

Bonds balances of validator and bonds balances.

Generate-Nominators()

Creates the amount of nominators with some unbonded balances.

Nominate(,)

Starts nomination of nominator for validator by bonding balances.

Create-Rewards(, ,)

Starts an Era and creates pending rewards for validator and nominators.

Timer()

Measures the time from the start of the specified function to its completion.

Add-To(,)

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst-case scenario should be chosen (the highest

value).

3: era_depth ← 1,HistoryDepth
4: validator ←
5: validator

6: nominators ← amount

7: nominator ∈ nominators

8: validator,nominator
9:

10: era_index ← validator,nominators, era_depth
11: time ← validator , era_index
12: collection, time
13:

14:

15: W ← collection

16: W

validator

amount

validator nominator

validator nominators era depth

function

collection time

collection

transfer

let transactor = ensure_signed(origin)?;
let dest = T::Lookup::lookup(dest)?;
<Self as Currency<_>>::transfer(
 &transactor,
 &dest,
 value,
 ExistenceRequirement::AllowDeath
)?;

However, one needs to pay close attention to the property AllowDeath and to how the function treats existings and non-existing accounts

differently. Two types of behaviors are to consider:

If the transfer completely depletes the sender account balance to zero (or below the minimum "keep-alive" requirement), it removes the

address and all associated data from storage.

If the recipient account has no balance, the transfer also needs to create the recipient account.

10.5.3.2. Considerations

Specific parameters can could have a significant impact for this specific function. In order to trigger the two behaviors mentioned above, the

following parameters are selected:

Type From To Description

Account index index in…​ 1 1000 Used as a seed for account creation

Balance balance in…​ 2 1000 Sender balance and transfer amount

Executing a benchmark for each balance increment within the balance range for each index increment within the index range will generate too many

variants () and highly increase execution time. Therefore, this benchmark is configured to first set the balance at value 1’000 and then to

iterate from 1 to 1’000 for the index value. Once the index value reaches 1’000, the balance value will reset to 2 and iterate to 1’000 (see "transfer"

Runtime function benchmark for more detail):

index : 1, balance : 1000

index : 2, balance : 1000

index : 3, balance : 1000

…​

index : 1000, balance : 1000

index : 1000, balance : 2

index : 1000, balance : 3

index : 1000, balance : 4

…​

The parameters themselves do not influence or trigger the two worst conditions and must be handled by the implemented benchmarking tool. The

 benchmark is implemented as defined in "transfer" Runtime function benchmark.

10.5.3.3. Benchmarking Framework

The benchmarking implementation for the Polkadot Runtime function is defined as follows (starting with the Main function):

Algorithm 29. transfer Runtime Function Benchmark

1000 × 999

transfer

transfer

Algorithm "transfer" Runtime function benchmark

Ensure: : a collection of time measurements of all benchmark iterations
function Main()

init
init
for do

 Run-Benchmark()
Add-To()

end for
init
for do

 Run-Benchmark()
Add-To()

end for

collection

1:

2: collection = {}
3: balance = 1 000′

4: index ← 1, 1 000′

5: time ← index, balance
6: collection, time
7:

8: index = 1 000′

9: balance ← 2, 1 000′

10: time ← index, balance
11: collection, time
12:

https://spec.polkadot.network/id-weights#algo-benchmark-transfer
https://spec.polkadot.network/id-weights#algo-benchmark-transfer

10.5.4. Practical Example #4: withdraw_unbounded

The withdraw_unbonded function of the staking module is designed to move any unlocked funds from the staking management system to be

ready for transfer. It contains some operations which have some I/O overhead.

10.5.4.1. Analysis

Similarly to the payout_stakers function (Section 10.5.2.), this function fetches the Ledger which contains information about the stash, such as

bonded balance and unlocking balance (balance that will eventually be freed and can be withdrawn).

The function consolidate_unlocked does some cleaning up on the ledger, where it removes outdated entries from the unlocking balance (which

implies that balance is now free and is no longer awaiting unlock).

 Compute-Weight()
return

end function
function Run-Benchmark(,)

 Create-Account()
 Create-Accouny()

Set-Balance()
 Timer(Transfer())

return
end function

where

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index representing the address of a account. This function only creates an

address and does not conduct any I/O.

Set-Balance(,)

Sets a initial balance for the specified account in the storage state.

Transfer(, ,)

Transfers the specified balance from sender to recipient by calling the corresponding Runtime function. This represents the target Runtime

function to be benchmarked.

Add-To(,)

Adds a returned time measurement (time) to collection.

Timer()

Adds a returned time measurement (time) to collection.

Compute-Weight()

Computes the resulting weight based on the time measurements in the collection. The worst case scenario should be chosen (the highest

value).

13: W ← collection

14: W

15:

16: index balance

17: sender ← caller, index
18: recipient ← recipient, index
19: sender, balance
20: time ← sender, recipient, balance
21: time

22:

name index

account balance

sender recipient balance

collection time

function

collection

if let Some(current_era) = Self::current_era() {
 ledger = ledger.consolidate_unlocked(current_era)
}

https://spec.polkadot.network/id-weights#sect-practical-example-payout-stakers

This function does a check on wether the updated ledger has any balance left in regards to staking, both in terms of locked, staking balance and

unlocking balance. If not amount is left, the all information related to the stash will be deleted. This results in multiple I/O calls.

The resulting call to Self::kill_stash() triggers:

Alternatively, if there’s some balance left, the adjusted ledger simply gets updated back into storage.

Finally, it withdraws the unlocked balance, making it ready for transfer:

10.5.4.2. Parameters

The following parameters are selected:

Type From To Description

Account index index in…​ 0 1000 Used as a seed for account creation

This benchmark does not require complex parameters. The values are used solely for account generation.

10.5.4.3. Considerations

Two important points in the withdraw_unbonded function must be considered. The benchmarks should trigger both conditions

The updated ledger is inserted back into storage.

If the stash gets killed, then multiple, repetitive deletion calls are performed in the storage.

let mut total = self.total;
let unlocking = self.unlocking.into_iter()
 .filter(|chunk| if chunk.era > current_era {
 true
 } else {
 total = total.saturating_sub(chunk.value);
 false
 })
 .collect();

if ledger.unlocking.is_empty() && ledger.active.is_zero() {
 // This account must have called `unbond()` with some value that caused the active
 // portion to fall below existential deposit + will have no more unlocking chunks
 // left. We can now safely remove all staking-related information.
 Self::kill_stash(&stash, num_slashing_spans)?;
 // remove the lock.
 T::Currency::remove_lock(STAKING_ID, &stash);
 // This is worst case scenario, so we use the full weight and return None
 None
}

clear_stash_metadata::<T>(stash, num_slashing_spans)?;
<Bonded<T>>::remove(stash);
<Ledger<T>>::remove(&controller);
<Payee<T>>::remove(stash);
<Validators<T>>::remove(stash);
<Nominators<T>>::remove(stash);

slashing::

// This was the consequence of a partial unbond. just update the ledger and move on.
Self::update_ledger(&controller, &ledger);

let value = old_total - ledger.total;
Self::deposit_event(RawEvent::Withdrawn(stash, value));

10.5.4.4. Benchmarking Framework

The benchmarking implementation for the Polkadot Runtime function withdraw_unbonded is defined as follows:

Algorithm 30. withdraw_unbonded Runtime Function Benchmark

Algorithm "withdraw_unbonded" Runtime function benchmark

Ensure:
function Main()

init
for do

 Create-Account()
 Create-Account()

Set-Balance()
Set-Balance()
Bond()
Pass-Era()
UnBond()
Pass-Era()

 Timer(Withdraw-Unbonded())
Add-To()

end for
 Compute-Weight()

return
end function

where

Create-Account(,)

Creates a Blake2 hash of the concatenated input of name and index representing the address of a account. This function only creates an

address and does not conduct any I/O.

Set-Balance(,)

Sets a initial balance for the specified account in the storage state.

Bond(, ,)

Bonds the specified amount for the stash and controller pair.

UnBond(,)

Unbonds the specified amount for the given account.

Pass-Era()

Pass one era. Forces the function withdraw_unbonded to update the ledger and eventually delete information.

Withdraw-Unbonded()

Withdraws the the full unbonded amount of the specified controller account. This represents the target Runtime function to be

benchmarked.

Add-To(,)

Adds a returned time measurement (time) to collection.

Timer()

Measures the time from the start of the specified f unction to its completion.

Compute-Weight()

W

1:

2: collection = {}
3: balance ← 1, 100
4: stash ← stash, 1
5: controller ← controller, 1
6: stash, 100
7: controller, 1
8: stash, controller, balance
9:

10: controller, balance
11:

12: time ← controller

13: collection, time
14:

15: W ← collection

16: W

17:

name index

amount balance

stash controller amount

account amount

controller

collection time

function

collection

10.6. Fees
Block producers charge a fee in order to be economically sustainable. That fee must always be covered by the sender of the transaction. Polkadot

has a flexible mechanism to determine the minimum cost to include transactions in a block.

10.6.1. Fee Calculation

Polkadot fees consists of three parts:

Base fee: a fixed fee that is applied to every transaction and set by the Runtime.

Length fee: a fee that gets multiplied by the length of the transaction, in bytes.

Weight fee: a fee for each, varying Runtime function. Runtime implementers need to implement a conversion mechanism which determines the

corresponding currency amount for the calculated weight.

The final fee can be summarized as:

10.6.2. Definitions in Polkadot

The Polkadot Runtime defines the following values:

Base fee: 100 uDOTs

Length fee: 0.1 uDOTs

Weight to fee conversion:

 fee = weight \times (100

A weight of 10’000 (the smallest non-zero weight) is mapped to of 100 uDOT. This fee will never exceed the max size of an unsigned 128 bit

integer.

10.6.3. Fee Multiplier

Polkadot can add a additional fee to transactions if the network becomes too busy and starts to decelerate the system. This fee can create an

incentive to avoid the production of low priority or insignificant transactions. In contrast, those additional fees will decrease if the network calms

down and it can execute transactions without much difficulties.

That additional fee is known as the Fee Multiplier and its value is defined by the Polkadot Runtime. The multiplier works by comparing the

saturation of blocks; if the previous block is less saturated than the current block (implying an uptrend), the fee is slightly increased. Similarly, if the

previous block is more saturated than the current block (implying a downtrend), the fee is slightly decreased.

The final fee is calculated as:

10.6.3.1. Update Multiplier

The Update Multiplier defines how the multiplier can change. The Polkadot Runtime internally updates the multiplier after each block according

the following formula:

Computes the resulting weight based on the time measurements in the collection. The worst case scenario should be chosen (the highest

value).

​ ​

fee = base fee

+ length of transaction in bytes × length fee

+ weight to fee

weight uDOTs ÷ 10 × 10 000)(′)

​10
1

finalfee = fee × FeeMultiplier

​ ​ ​

diff

v

next weight

=

=

=

(target weight − previous block weight)

0.00004

weight × (1 + (v × diff) + (v × diff) /2)2

Polkadot defines the target_weight as 0.25 (25%). More information about this algorithm is described in the Web3 Foundation research paper.

https://research.web3.foundation/en/latest/polkadot/overview/2-token-economics#relay-chain-transaction-fees-and-per-block-transaction-limits

11. Consensus

11.1. BABE digest messages
The Runtime is required to provide the BABE authority list and randomness to the host via a consensus message in the header of the first block of

each epoch.

The digest published in Epoch is enacted in . The randomness in this digest is computed based on all the VRF outputs up to including

Epoch while the authority set is based on all transaction included up to Epoch .

The computation of the randomness seed is described in Epoch-Randomness, which uses the concept of epoch subchain as described in host

specification and the value , which is the VRF output computed for slot .

Algorithm 31. Epoch Randomness

E ​n E ​n+1

E ​n−2 E ​n−1

d ​B s ​B

Algorithm Epoch-Randomness

Require:
init
for in SubChain() do

end for
return Blake2b(Epoch-Randomness())

where is the epoch index.

n > 2
1: ρ ← ϕ

2: B E ​n−2

3: ρ ← ρ∣∣d ​B

4:

5: n − 1 ∣∣n∣∣ρ

n

https://spec.polkadot.network/id-consensus#algo-epoch-randomness

12. Metadata
The runtime metadata structure contains all the information necessary on how to interact with the Polkadot runtime. Considering that Polkadot

runtimes are upgradable and, therefore, any interfaces are subject to change, the metadata allows developers to structure any extrinsics or storage

entries accordingly.

The metadata of a runtime is provided by a call to Metadata_metadata (Section C.5.1.) and is returned as a scale encoded (Section A.2.2.) binary

blob. How to interpret and decode this data is described in this chapter.

12.1. Structure
The Runtime Metadata is a data structure of the following format:

where

 are the first four constant bytes, spelling "meta" in ASCII.

 is an unsigned 8-bit integer indicating the format version of the metadata structure (currently the value of 14).

 is a sequence (Definition 182) of type definitions (Definition 149).

 is a sequence (Definition 182) of pallet metadata (Section 12.2.).

 is the type Id (Definition 150) of the extrinsics.

 is an unsigned 8-bit integer indicating the format version of the extrinsics (implying a possible breaking change).

 is a sequence (Definition 182) of extrinsics metadata (Definition 160).

 is the type Id (Definition 150) of the runtime.

Image 8. Metadata

Metadata

pos size type id
0 4 magic
4 1 u1 metadata_version
5 ... Scale::CompactInt num_types
... ... MetadataType types

repeat num_types.value times
... ... Scale::CompactInt num_pallets
... ... MetadataPallet pallets

repeat num_pallets.value times
... ... Scale::CompactInt extrinsic_type
... 1 u1 extrinsic_version
... ... Scale::CompactInt num_extrinsics
... ... MetadataExtrinsic extrinsics

repeat num_extrinsics.value times
... ... Scale::CompactInt runtime_type

MetadataType

MetadataPallet

MetadataExtrinsic

M , v ​,R,P , t ​, v ​,E, t ​(m e e r)

R = r ​, … , r ​(0 n)

P = p ​, … , p ​(0 n)

E = e ​, … , e ​(0 n)

M

v ​m

R r ​i

P p ​i

t ​e

v ​e

E e ​i

t ​r

https://spec.polkadot.network/chap-runtime-api#sect-rte-metadata-metadata
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-registry-entry
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#sect-rtm-pallet-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-signed-extension-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#img-metadata-type
https://spec.polkadot.network/sect-metadata#img-metadata-pallet
https://spec.polkadot.network/sect-metadata#img-metadata-extrinsic

Definition 149. Runtime Registry Type Entry

Definition 150. Runtime Type Id

Definition 151. Type Variant

A registry entry contains information about a type in its portable form for serialization. The entry is a data structure of the following format:

where

 is a compact integer indicating the identifier of the type.

 is the path of the type, optional and based on the source file location. Encoded as a sequence (Definition 182) of strings.

 is a sequence (Definition 182) of generic parameters (empty for non-generic types).

 is the name string of the generic type parameter

 is a Option type containing a type Id (Definition 150).

 is the type definition (Definition 151).

 is the documentation as sequence (Definition 182) of strings.

Image 9. Metadata Type

MetadataType

MetadataType::Param

pos size type id
0 ... Scale::CompactInt id
... ... Scale::StringList path
... ... Scale::CompactInt num_params
... ... Param params

repeat num_params.value times
... ... MetadataTypeDefinition definition
... ... Scale::StringList docs

pos size type id
0 ... Scale::String name
... ... Scale::MaybeCompactInt type

MetadataTypeDefinition

r ​ =i id ​, p,T ,D, c(t)

T = t ​, … , t ​(0 n)

t ​ =i n, y()

id ​t

p

T

n

y

D

c

The runtime type Id is a compact integer representing the index of the entry (Definition 149) in or of the runtime metadata structure

(Section 12.1.), depending on context (starting at).

R,P E

0

The type definition is a varying datatype (Definition 178) and indicates all the possible types of encodable values a type can have.D

⎧

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-definition
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#img-metadata-type-definition
https://spec.polkadot.network/sect-metadata#defn-rtm-registry-entry
https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

where

 is a sequence of the following format:

 is a field (Definition 152).

 is a sequence of the following format:

 is a variant (Definition 153).

 is a type Id (Definition 150).

 is of the following format:

 is an unsigned 32-bit integer indicating the length

 is a type Id (Definition 150).

 is a sequence (Definition 182) of type Ids (Definition 150).

 is a varying datatype (Definition 178) of the following structure:

 is a type Id (Definition 150).

 is a data structure of the following format:

 is a type Id (Definition 150) representing the bit store order (external reference)

 is a type Id (Definition 150) the bit order type (external reference).

Image 10. Metadata Type Definition

D = ​ ​ ​ ​ ​

⎩
⎨

⎧0
1
2
3
4
5
6
7

→
→
→
→
→
→
→
→

C

V

s ​v

S

T

P

e

B

composite type (e.g. structure or tuple)
variant type

sequence type varying length
sequence with fixed length

tuple type
primitive type

compact encoded type
sequence of bits

C

C = f ​, … , f ​(0 n)

f ​i

V

V = v ​, … , v ​(0 n)

v ​i

s ​v

S

S = l, y()

l

y

T

P

P = ​ ​ ​

⎩

⎨

⎧ 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

boolean
char

string
unsigned 8-bit integer

unsigned 16-bit integer
unsigned 32-bit integer
unsigned 64-bit integer
unsigned 128-bit integer
unsigned 256-bit integer

signed 8-bit integer
signed 16-bit integer
signed 32-bit integer
signed 64-bit integer
signed 128-bit integer
signed 256-bit integer

e

B

B = s, o()

s

o

https://spec.polkadot.network/sect-metadata#defn-rtm-field
https://spec.polkadot.network/sect-metadata#defn-rtm-variant
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://docs.rs/bitvec/latest/bitvec/store/trait.BitStore
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://docs.rs/bitvec/latest/bitvec/order/trait.BitOrder

Definition 152. Field

MetadataTypeDefinition

MetadataTypeDefinition::Array

MetadataTypeDefinition::Sequence

MetadataTypeDefinition::Primitive

MetadataTypeDefinition::Tuple

MetadataTypeDefinition::Bits

MetadataTypeDefinition::Compact

pos size type id
0 1 u1→Type type
1 ... switch (type) details

case type
:type_composite MetadataTypeFields

:type_bits Bits
:type_array Array

:type_sequence Sequence
:type_primitive Primitive
:type_compact Compact
:type_variant MetadataTypeVariants
:type_tuple Tuple

pos size type id
0 4 u4le length
4 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 1 u1→Pid id

pos size type id
0 ... Scale::CompactInt num_types
... ... Scale::CompactInt types

repeat num_types.value times

pos size type id
0 ... Scale::CompactInt type
... ... Scale::CompactInt order

pos size type id
0 ... Scale::CompactInt type

MetadataTypeFields

MetadataTypeVariants

A field of a data structure of the following format:

where

 is an Option type containing the string that indicates the field name.

 is a type Id (Definition 150).

 is an Option type containing a string that indicates the name of the type as it appears in the source code.

 is a sequence of varying length containing strings of documentation.

Image 11. Metadata Type Fields

f ​ = n, y, y ​,Ci (n)

n

y

y ​n

C

https://spec.polkadot.network/sect-metadata#img-metadata-type-fields
https://spec.polkadot.network/sect-metadata#img-metadata-type-variants
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id

Definition 153. Variant

12.2. Pallet Metadata
All the metadata about a pallet, part of the main structure (Section 12.1.) and of the following format:

where

 is a string representing the pallet name.

 is an Option type containing the pallet storage metadata (Definition 154).

 is an Option type (Definition 180) containing the type Id (Definition 150) of pallet calls.

 is an Option type (Definition 180) containing the type Id (Definition 150) of pallet events.

 is an Sequence (Definition 182) of all pallet constant metadata (Definition 159).

 is an Option type (Definition 180) containing the type Id (Definition 150) of the pallet error.

 is an unsigned 8-bit integer indicating the index of the pallet, which is used for encoding pallet events and calls.

MetadataTypeFields

MetadataTypeFields::Field
pos size type id
0 ... Scale::CompactInt num_fields
... ... Field fields

repeat num_fields.value times

pos size type id
0 ... Scale::MaybeString name
... ... Scale::CompactInt type
... ... Scale::MaybeString typename
... ... Scale::StringList docs

A struct variant of the following format:

where

 is a string representing the name of the variant.

 is a possible empty array of varying length containing field (Definition 152) elements.

 is an unsigned 8-bit integer indicating the index of the variant.

 is a sequence of strings containing the documentation.

Image 12. Metadata Type Variants

MetadataTypeVariants

MetadataTypeVariants::Variant

pos size type id
0 ... Scale::CompactInt num_variants
... ... Variant variants

repeat num_variants.value times

pos size type id
0 ... Scale::String name
... ... MetadataTypeFields composite
... 1 u1 index
... ... Scale::StringList docs

MetadataTypeFields

v ​ =i n,F , k,C()

n

F

k

C

p ​ =i n,S, a, e,C, e, i()

n

S

a

e

C

e

i

https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/sect-metadata#defn-rtm-pallet-storage-metadata
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/sect-metadata#defn-rtm-pallet-constants
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-field
https://spec.polkadot.network/sect-metadata#img-metadata-type-fields

Image 13. Metadata Pallet

MetadataPallet

MetadataPallet::Calls

MetadataPallet::Events

MetadataPallet::Errors

pos size type id
0 ... Scale::String name
... 1 u1 has_storage
... ... PalletStorage storage
... 1 u1 has_calls
... ... Calls calls
... 1 u1 has_events
... ... Events events
... ... Scale::CompactInt num_constants
... ... PalletConstant constants

repeat num_constants.value times
... 1 u1 has_errors
... ... Errors errors
... 1 u1 index

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt type

PalletStorage

PalletConstant

Definition 154. Pallet Storage Metadata

Definition 155. Storage Entry Metadata

The metadata about pallets storage.

where

 is the string representing the common prefix used by all storage entries.

 is an array of varying lengths containing elements of storage entries (Definition 155).

S = p,E()

E = e ​, … , e ​(0 n)

p

E

The metadata about a pallets storage entry.

where

 is the string representing the variable name of the storage entry.

 is an enum type determining the storage entry modifier (Definition 156).

 is the type of the value stored in the entry (Definition 157).

 is a byte array containing the default value.

e ​ =i n,m, y, d,C()

C = c ​, … , c ​(0 n)

n

m

y

d

https://spec.polkadot.network/sect-metadata#img-pallet-storage
https://spec.polkadot.network/sect-metadata#img-pallet-constant
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-metadata
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-modifier
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-type

Definition 156. Storage Entry Modifier

Definition 157. Storage Entry Type

 is an array of varying lengths of strings containing the documentation.

Image 14. Pallet Storage

PalletStorage

PalletStorage::Item

pos size type id
0 ... Scale::String prefix
... ... Scale::CompactInt num_items
... ... Item items

repeat num_items.value times

pos size type id
0 ... Scale::String name
... 1 u1→StorageModifier modifier
... ... StorageDefinition definition
... ... Scale::Bytes fallback
... ... Scale::StringList docs

StorageDefinition

C

The storage entry modifier is a varying datatype (Definition 178) and indicates how the storage entry is returned and how it behaves if the entry

is not present.

where 0 indicates that the entry returns an Option type and therefore None if the storage entry is not present. 1 indicates that the entry returns

the type with default value (in Definition 155) if the entry is not present.

INFO

This might be incorrect and has to be reviewed.

m = ​ ​{0
1

optional
default

y d

The type of the storage value is a varying datatype (Definition 178) that indicates how the entry is stored.

where , (key) and (value) are all of type Ids (Definition 150). is an array of varying length containing the storage hasher (Definition 158).

Image 15. Storage Definition

StorageDefinition

StorageDefinition::Plain

StorageDefinition::Map

pos size type id
0 1 u1→StorageType type
1 ... switch (type) details

case type
:storage_type_plain Plain
:storage_type_map Map

pos size type id
0 ... Scale::CompactInt type

pos size type id
0 ... Scale::CompactInt num_hasher
... 1 u1→HasherType hasher

repeat num_hasher.value times
... ... Scale::CompactInt key
... ... Scale::CompactInt value

y = ​ ​ ​ ​{0
1

→
→

t

H, k, v()
plain type

storage map

t k v H

https://spec.polkadot.network/sect-metadata#img-storage-definition
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-entry-metadata
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-storage-hasher

Definition 158. Storage Hasher

Definition 159. Pallet Constants

12.3. Extrinsic Metadata
The metadata about a pallets extrinsics, part of the main structure (Section 12.1.) and of the following format:

Definition 160. Signed Extension Metadata

The hashing algorithm is used by storage maps.

​ ​ ​

⎩
⎨
⎧0

1
2
3
4
5
6

128-bit Blake2 hash
256-bit Blake2 hash

Multiple 128-bit Blake2 hashes concatenated
128-bit XX hash
256-bit XX hash

Multiple 64-bit XX hashes concatenated
Identity hashing

The metadata about the pallets constants.

where

 is a string representing the name of the pallet constant.

 is the type Id (Definition 150) of the pallet constant.

 is a byte array containing the value of the constant.

 is an array of varying lengths containing a string with the documentation.

Image 16. Pallet Constant

PalletConstant

pos size type id
0 ... Scale::String name
... ... Scale::CompactInt type
... ... Scale::Bytes value
... ... Scale::StringList docs

c ​ =i n, y, v,C()

n

y

v

C

The metadata about the additional, signed data required to execute an extrinsic.

where

 is a string representing the unique signed extension identifier, which may be different from the type name.

 is a type Id (Definition 150) of the signed extension, with the data to be included in the extrinsic.

 is the type Id (Definition 150) of the additional signed data, with the data to be included in the signed payload.

Image 17. Metadata Extrinsic

e ​ =i n, y, a()

n

y

a

https://spec.polkadot.network/sect-metadata#sect-rtm-structure
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id
https://spec.polkadot.network/sect-metadata#defn-rtm-type-id

MetadataExtrinsic

pos size type id
0 ... Scale::String name
... ... Scale::CompactInt type
... ... Scale::CompactInt additional

Appendix A: Cryptography &

Encoding
The appendix chapter contains various protocol details.

A.1. Cryptographic Algorithms

A.1.1. Hash Functions

A.1.1.1. BLAKE2

BLAKE2 is a collection of cryptographic hash functions known for their high speed. Their design closely resembles BLAKE which has been a finalist

in the SHA-3 competition.

Polkadot is using the Blake2b variant, which is optimized for 64-bit platforms. Unless otherwise specified, the Blake2b hash function with a 256-bit

output is used whenever Blake2b is invoked in this document. The detailed specification and sample implementations of all variants of Blake2 hash

functions can be found in RFC 7693 (1).

A.1.2. Randomness

A.1.3. VRF

A Verifiable Random Function (VRF) is a mathematical operation that takes some input and produces a random number using a secret key along with

a proof of authenticity that this random number was generated using the submitter’s secret key and the given input. The proof can be verified by

any challenger to ensure the random number generation is valid and has not been tampered with (for example to the benfit of submitter).

In Polkadot, VRFs are used for the BABE block production lottery by Block-Production-Lottery and the parachain approval voting mechanism

(Section 8.5.). The VRF uses a mechanism similar to algorithms introduced in the following papers:

Making NSEC5 Practical for DNSSEC (2)

DLEQ Proofs

Verifiable Random Functions (VRFs) (3)

It essentially generates a deterministic elliptic curve based on Schnorr signature as a verifiable random value. The elliptic curve group used in the

VRF function is the Ristretto group specified in:

ristretto.group/

Definition 161. VRF Proof

Definition 162. DLEQ Prove

INFO

TBH

The VRF proof proves the correctness of an associated VRF output. The VRF proof, , is a data structure of the following format:

where is the challenge and is the 32-byte Schnorr poof. Both are expressed as Curve25519 scalars as defined in Definition Definition 162.

P

P = C,S()

S = b ​, … b ​(0 31)

C S

https://spec.polkadot.network/sect-block-production#algo-block-production-lottery
https://spec.polkadot.network/chapter-anv#sect-approval-voting
https://eprint.iacr.org/2017/099.pdf
https://blog.cloudflare.com/privacy-pass-the-math/#dleqproofs
https://tools.ietf.org/id/draft-goldbe-vrf-01
https://ristretto.group/
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-dleq-prove

Definition 163. DLEQ Verify

The function creates a proof for a given input, , based on the provided transcript, .

First:

Then the witness scalar is calculated, , where is the 32-byte secret seed used for nonce generation in the context of sr25519.

where is the length of the witness, encoded as a 32-bit little-endian integer. is a 32-byte array containing the secret witness scalar.

where

 is the compressed Ristretto point of the scalar input.

 is the compressed Ristretto point of the public key.

 is the compressed Ristretto point of the wittness:

For the 64-byte challenge:

And the Schnorr proof:

where is the secret key.

dleq_prove t, i() i T

t ​ =1 append t, ’proto-name’, ’DLEQProof’()

t ​ =2 append t ​, ’vrf:h’, i(1)

s ​w w

​ ​

t ​3

t ​4

t ​5

t ​6

t ​7

t ​8

(ϕ, s ​)w

= meta-AD(t ​, ’proving00’, more=False)2

= meta-AD(t ​,w ​, more=True)3 l

= KEY(t ​,w, more=False)4

= meta-AD(t ​, ’rng’, more=False)5

= KEY(t ​, r, more=False)6

= meta-AD(t ​, e_(64), more=False)7

= PRF(t ​, more=False)8

w ​l r

​ ​

l ​1

l ​2

l ​3

l ​4

= append(t ​, ’vrf:R=g ’, s ​)2
r

w

= append(l ​, ’vrf:h ’, s ​)1
r

i

= append(l ​, ’vrf:pk’, s ​)2 p

= append(l ​, ’vrf:h ’, vrf ​)3
sk

o

s ​i

s ​p

s ​w

l ​ =5 meta-AD l ​, ’prove’, more=False(4)

l ​ =6 meta-AD l ​, e ​, more=True(5 64)

C = PRF l ​, more=False(6)

S = s ​ −w C ⋅ p()

p

The function verifiers the VRF input, against the output, , with the associated proof (Definition 161) and public key,

.

where

 is calculated as:

dleq_verify i, o,P , p ​(k) i o

p ​k

​ ​

t ​1

t ​2

t ​3

t ​4

t ​5

t ​6

= append(t, ’proto-name’, ’DLEQProof’)

= append(t ​, ’vrf:h’, s ​)1 i

= append(t ​, ’vrf:R=g ’,R)2
r

= append(t ​, ’vrf:h ’,H)3
r

= append(t ​, ’vrf:pk’, p ​)4 k

= append(t ​, ’vrf:h ’, o)5
sk

R

https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-proof

A.1.3.1. Transcript

A VRF transcript serves as a domain-specific separator of cryptographic protocols and is represented as a mathematical object, as defined by

Merlin, which defines how that object is generated and encoded. The usage of the transcript is implementation specific, such as for certain

mechanisms in the Availability & Validity chapter (Chapter 8), and is therefore described in more detail in those protocols. The input value used to

initiate the transcript is referred to as a context (Definition 164).

Definition 164. VRF Context

Definition 165. VRF Transcript

Definition 166. STROBE Operations

where is the Ristretto basepoint.

 is calculated as:

The challenge is valid if equals :

R = C ∈ P × p ​ +k S ∈ P + B

B

H

H = C ∈ P × o + S ∈ P × i

C ∈ P y

t ​ =7 meta-AD t ​, ’prove’, more=False(6)

t ​ =8 meta-AD t ​, e ​, more=True(7 64)

y = PRF t ​, more=False(8)

The VRF context is a constant byte array used to initiate the VRF transcript. The VRF context is constant for all users of the VRF for the

specific context for which the VRF function is used. Context prevents VRF values generated by the same nodes for other purposes to be reused

for purposes not meant to. For example, the VRF context for the BABE Production lottery defined in Section 5.2. is set to be "substrate-babe-

vrf".

A transcript, or VRF transcript, is a STROBE object, , as defined in the STROBE documentation, respectively section "5. State of a STROBE

object".

where

The duplex state, , is a 200-byte array created by the keccak-f1600 sponge function on the initial STROBE state. Specifically, R is of

value 166 and X.Y.Z is of value 1.0.2 .

 has the initial value of 0 .

 has the initial value of 0 .

 has the initial value of 0 .

Then, the meta-AD operation (Definition 166) (where more=False) is used to add the protocol label Merlin v1.0 to followed by

appending (Section A.1.3.1.1.) label dom-step and its corresponding context, , resulting in the final transcript, .

 serves as an arbitrary identifier/separator and its value is defined by the protocol specification individually. This transcript is treated just like

a STROBE object, wherein any operations (Definition 166) on it modify the values such as and .

Formally, when creating a transcript, we refer to it as .

obj

obj = st, pos, pos ​, I ​(begin 0)

st

pos

pos ​begin

I ​0

obj
ctx T

t = meta-AD obj, ’Merlin v1.0’, False()

T = append t, ’dom-step’, ctx()

ctx
pos pos ​begin

Transcript ctx()

https://spec.polkadot.network/chapter-anv
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-context
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://strobe.sourceforge.io/specs/#object
https://keccak.team/keccak_specs_summary
https://strobe.sourceforge.io/specs/#object.initial
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://spec.polkadot.network/id-cryptography-encoding#sect-vrf-appending-messages
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations

A.1.3.1.1. Messages

Appending messages, or "data", to the transcript (Definition 165) first requires meta-AD operations for a given label of the messages, including the

size of the message, followed by an AD operation on the message itself. The size of the message is a 4-byte, little-endian encoded integer.

where is the transcript (Definition 165), is the given label and the message, respectively representing its size. is the resulting transcript

with the appended data. STROBE operations are described in Definition 166.

Formally, when appending a message, we refer to it as .

A.1.4. Cryptographic Keys

Various types of keys are used in Polkadot to prove the identity of the actors involved in the Polkadot Protocols. To improve the security of the users,

each key type has its own unique function and must be treated differently, as described in this Section.

Definition 167. Account Key

Definition 168. Stash Key

Definition 169. Controller Key

STROBE operations are described in the STROBE specification, respectively section "6. Strobe operations". Operations are indicated by their

corresponding bitfield, as described in section "6.2. Operations and flags" and implemented as described in section "7. Implementation of

operations"

T ​ =0 meta-AD T , l, False()

T ​ =1 meta-AD T ​,m ​, True(0 l)

T ​ =2 AD T ​,m, False(1)

T l m m ​l T ​2

append T , l,m()

Account key is a key pair of type of either of the schemes in the following table:

Table 2. List of the public key scheme which can be used for an account key

Key

Scheme
Description

sr25519 Schnorr signature on Ristretto compressed ed25519 points as implemented in TODO

ed25519

The ed25519 signature complies with (4) except for the verification process which adhere to Ed25519 Zebra variant

specified in (5). In short, the signature point is not assumed to be in the prime-ordered subgroup group. As such, the verifier

must explicitly clear the cofactor during the course of verifying the signature equation.

secp256k1 Only for outgoing transfer transactions.

An account key can be used to sign transactions among other accounts and balance-related functions. There are two prominent subcategories

of account keys, namely "stash keys" and "controller keys", each being used for a different function. Keys defined in Definition 167, Definition

168 and Definition 169 are created and managed by the user independent of the Polkadot implementation. The user notifies the network about

the used keys by submitting a transaction, as defined in Section A.1.4.2. and Section A.1.4.5. respectively.

sk , pk(a a)

The Stash key is a type of account key that holds funds bonded for staking (described in Section A.1.4.1.) to a particular controller key (defined

in Definition 169). As a result, one may actively participate with a stash key, keeping the stash key offline in a secure location. It can also be

used to designate a Proxy account to vote in governance proposals, as described in Section A.1.4.2.. The Stash key holds the majority of the

users’ funds and should neither be shared with anyone, saved on an online device, nor used to submit extrinsics.

https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#defn-vrf-transcript
https://spec.polkadot.network/id-cryptography-encoding#defn-strobe-operations
https://strobe.sourceforge.io/specs/
https://strobe.sourceforge.io/specs/#ops
https://strobe.sourceforge.io/specs/#ops.flags
https://strobe.sourceforge.io/specs/#ops.impl
https://spec.polkadot.network/id-cryptography-encoding#defn-account-key
https://spec.polkadot.network/id-cryptography-encoding#defn-stash-key
https://spec.polkadot.network/id-cryptography-encoding#defn-controller-key
https://spec.polkadot.network/id-cryptography-encoding#sect-creating-controller-key
https://spec.polkadot.network/id-cryptography-encoding#sect-certifying-keys
https://spec.polkadot.network/id-cryptography-encoding#sect-staking-funds
https://spec.polkadot.network/id-cryptography-encoding#defn-controller-key
https://spec.polkadot.network/id-cryptography-encoding#sect-creating-controller-key

Definition 170. Session Keys

A.1.4.1. Holding and staking funds

A.1.4.2. Creating a Controller key

A.1.4.3. Designating a proxy for voting

A.1.4.4. Controller settings

A.1.4.5. Certifying keys

Due to security considerations and Runtime upgrades, the session keys are supposed to be changed regularly. As such, the new session keys need

to be certified by a controller key before putting them into use. The controller only needs to create a certificate by signing a session public key and

broadcasting this certificate via an extrinsic. [TODO: spec the detail of the data structure of the certificate etc.]

The Controller key is a type of account key that acts on behalf of the Stash account. It signs transactions that make decisions regarding the

nomination and the validation of the other keys. It is a key that will be in direct control of a user and should mostly be kept offline, used to

submit manual extrinsics. It sets preferences like payout account and commission, as described in Section A.1.4.4.. If used for a validator, it

certifies the session keys, as described in Section A.1.4.5.. It only needs the required funds to pay transaction fees [TODO: key needing fund

needs to be defined].

Session keys are short-lived keys that are used to authenticate validator operations. Session keys are generated by the Polkadot Host and

should be changed regularly due to security reasons. Nonetheless, no validity period is enforced by the Polkadot protocol on session keys.

Various types of keys used by the Polkadot Host are presented in Table 3:

Table 3. List of key schemes which are used for session keys depending on the protocol

Protocol Key scheme

GRANDPA ED25519

BABE SR25519

I’m Online SR25519

Parachain SR25519

Session keys must be accessible by certain Polkadot Host APIs defined in Appendix B. Session keys are not meant to control the majority of the

users’ funds and should only be used for their intended purpose.

INFO

TBH

INFO

TBH

INFO

TBH

INFO

TBH

https://spec.polkadot.network/id-cryptography-encoding#sect-controller-settings
https://spec.polkadot.network/id-cryptography-encoding#sect-certifying-keys
https://spec.polkadot.network/id-cryptography-encoding#tabl-session-keys
https://spec.polkadot.network/chap-host-api

A.2. Auxiliary Encodings
Definition 171. Unix Time

A.2.1. Binary Enconding

Definition 172. Sequence of Bytes

Definition 173. Bitwise Representation

Definition 174. Little Endian

Definition 175. UINT32

By Unix time, we refer to the unsigned, little-endian encoded 64-bit integer which stores the number of milliseconds that have elapsed since

the Unix epoch, that is the time 00:00:00 UTC on 1 January 1970, minus leap seconds. Leap seconds are ignored, and every day is treated as if

it contained exactly 86’400 seconds.

By a sequences of bytes or a byte array, , of length , we refer to

We define to be the set of all byte arrays of length . Furthermore, we define:

We represent the concatenation of byte arrays and by:

b n

b = b ​, b ​, … , b ​ such that 0 ≤(0 1 n−1) b ​ ≤i 255

B ​n n

B = ​B ​

i=0

⋃
∞

i

a = a ​, … , a(0 n) b = b ​, … , b ​(0 m)

a∣b := (a ​, ..., a ​, b ​, ..., b ​)0 n 0 m

For a given byte the bitwise representation in bits is defined as:

where

0 ≤ b ≤ 255 b ​ ∈i 0, 1{ }

b = b ​ … b ​7 0

b = 2 b ​ +7
7 2 b ​ +6

6 … + 2 b ​

0
0

By the little-endian representation of a non-negative integer, , represented as

in base 256, we refer to a byte array such that

Accordingly, we define the function :

I

I = B ​ …B ​ ​(n 0)256

B = b ​, b ​, … , b ​(0 1 n)

b ​ =i B ​i

Enc ​LE

Enc ​ :LE Z →+ B; B ​ …B ​ ​∣ →(n 0)256 B ​B ​, … ,B ​(0, 1 n)

By UINT32 we refer to a non-negative integer stored in a byte array of length using little-endian encoding format.4

A.2.2. SCALE Codec

The Polkadot Host uses Simple Concatenated Aggregate Little-Endian” (SCALE) codec to encode byte arrays as well as other data structures.

SCALE provides a canonical encoding to produce consistent hash values across their implementation, including the Merkle hash proof for the State

Storage.

Definition 176. Decoding

Definition 177. Tuple

In the case of a tuple (or a structure), the knowledge of the shape of data is not encoded even though it is necessary for decoding. The decoder

needs to derive that information from the context where the encoding/decoding is happening.

Definition 178. Varying Data Type

Definition 179. Encoding of Varying Data Type

 refers to the decoding of a blob of data. Since the SCALE codec is not self-describing, it’s up to the decoder to validate whether the

blob of data can be deserialized into the given type or data structure.

It’s accepted behavior for the decoder to partially decode the blob of data. Meaning, any additional data that does not fit into a data structure

can be ignored.

Dec ​ dSC()

CAUTION

Considering that the decoded data is never larger than the encoded message, this information can serve as a way to validate values that

can vary in size, such as sequences (Definition 182). The decoder should strictly use the size of the encoded data as an upper bound

when decoding in order to prevent denial of service attacks.

The SCALE codec for Tuple, , such that:

Where ’s are values of different types, is defined as:

T

T = A ​, …A ​(1 n)

A ​i

Enc ​ T =SC() Enc ​ A ​ ||Enc ​ A ​ || … ||Enc ​ A ​SC(1) SC(2) SC(n)

We define a varying data type to be an ordered set of data types.

A value of varying date type is a pair where for some and is its value of type , which can be

empty. We define , unless it is explicitly defined as another value in the definition of a particular varying data type.

In particular, we define two specific varying data which are frequently used in various part of Polkadot protocol: Option (Definition 180) and

Result (Definition 181).

T = T ​, … ,T ​{ 1 n}

A A ​,A ​(Type Value) A ​ =Type T ​i T ​ ∈i T A ​Value T ​i

idx T ​ =(i) i − 1

The SCALE codec for value of varying data type , formally referred to as is defined as

follows:

Where is a 8-bit integer determining the type of . In particular, for the optional type defined in Definition 178, we have:

A = A ​,A ​(Type Value) T = T ​, …T ​{ i n} Enc ​ ASC()

Enc ​ A =SC() Enc ​ idx A ​ ||Enc ​ A ​SC((Type) SC(Value))

idx A

Enc ​ None,ϕ =SC() 0 ​B ​1

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 180. Option Type

Definition 181. Result Type

Definition 182. Sequence

Definition 183. Dictionary

Definition 184. Boolean

Definition 185. String

The SCALE codec does not encode the correspondence between the value and the data type it represents; the decoder needs prior knowledge

of such correspondence to decode the data.

The Option type is a varying data type of which indicates if data of type is available (referred to as some state) or not

(referred to as empty, none or null state). The presence of type none, indicated by , implies that the data corresponding to

type is not available and contains no additional data. Where as the presence of type indicated by implies that the data is

available.

None,T ​{ 2} T ​2

idx T ​ =(None) 0 T ​2

T ​2 idx T ​ =(2) 1

The Result type is a varying data type of which is used to indicate if a certain operation or function was executed successfully

(referred to as "ok" state) or not (referred to as "error" state). implies success, implies failure. Both types can either contain additional

data or are defined as empty type otherwise.

T ​,T ​{ 1 2}
T ​1 T ​2

The SCALE codec for sequence such that:

where ’s are values of the same type (and the decoder is unable to infer value of from the context) is defined as:

where is defined in Definition 188.

In some cases, the length indicator is omitted if the length of the sequence is fixed and known by the decoder upfront. Such

cases are explicitly stated by the definition of the corresponding type.

S

S = A ​, …A ​1 n

A ​i n

Enc ​ S =SC() Enc ​ S ||Enc ​ A || … ||Enc ​ A ​SC
Len(∣ ∣) SC(2) SC(n)

Enc ​SC
Len

Enc ​ SSC
Len(∣ ∣)

SCALE codec for dictionary or hashtable D with key-value pairs s such that:

is defined the SCALE codec of as a sequence of key value pairs (as tuples):

where is encoded the same way as but argument refers to the number of key-value pairs rather than the length.

k ​, v ​(i i)

D = k ​, v ​ , … k ​, v ​{(1 1) (n n)}

D

Enc ​ D =SC() Enc ​ D ||Enc ​ k ​, v ​ || … ||Enc ​ k ​, v ​SC
Size(∣ ∣) SC(1 1) SC(n n)

Enc ​SC
Size Enc ​SC

Len Size

The SCALE codec for a boolean value defined as a byte as follows:b

Enc ​ :SC False, True →{ } B ​1

b → ​ ​{0
1

b = False
b = True

https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding

Definition 186. Fixed Length

Definition 187. Empty

A.2.2.1. Length and Compact Encoding

SCALE Length encoding is used to encode integer numbers of variying sizes prominently in an encoding length of arrays:

Definition 188. Length Encoding

A.2.3. Hex Encoding

Practically, it is more convenient and efficient to store and process data which is stored in a byte array. On the other hand, the trie keys are broken

into 4-bits nibbles. Accordingly, we need a method to encode sequences of 4-bits nibbles into byte arrays canonically. To this aim, we define hex

encoding function as follows:

Definition 189. Hex Encoding

The SCALE codec for a string value is an encoded sequence (Definition 182) consisting of UTF-8 encoded bytes.

The SCALE codec, , for other types such as fixed length integers not defined here otherwise, is equal to little endian encoding of those

values defined in Definition 174.

Enc ​SC

The SCALE codec, , for an empty type is defined to a byte array of zero length and depicted as .Enc ​SC ϕ

SCALE Length encoding, , also known as a compact encoding, of a non-negative number is defined as follows:

in where the least significant bits of the first byte of byte array b are defined as follows:

and the rest of the bits of store the value of in little-endian format in base-2 as follows:

such that:

Note that denotes the length of the original integer being encoded and does not include the extra-byte describing the length. The encoding

can be used for integers up to .

Enc ​SC
Len n

Enc ​ :SC
Len N → B

n → b = ​ ​ ​⎩⎨
⎧ l ​1

i ​i ​1 2

j ​j ​j ​j ​1 2 3 4

k ​k ​ … k ​1 2 m+1

0 ≤ n < 26

2 ≤ n < 26 14

2 ≤ n < 214 30

2 ≤ n30

l ​l ​ =1
1

1
0 00

i ​i ​ =1
1

1
0 01

j ​j ​ =1
1

1
0 10

k ​k ​ =1
1

1
0 11

b n

n = ​ ​ ​⎩⎨
⎧ l ​ … l ​l ​1

7
1
3

1
2

i ​ … i ​i ​..i ​2
7

2
0

1
7

1
2

j ​ … j ​j ​ … j ​ … j ​4
7

4
0

3
7

1
7

1
2

k ​ + k ​2 + k ​2 + … + k ​22 3
8

4
2×8

m+1
m−1 8()

n < 26

2 ≤ n < 26 14

2 ≤ n < 214 30

2 ≤ n30

k ​ … k ​k ​ =1
7

1
3

1
2 m − 4

m

2 −(63+4)8 1 = 2 −536 1

Enc HE PK()()

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/id-cryptography-encoding#defn-little-endian

A.3. Chain Specification
Chain Specification (chainspec) is a collection of information that describes the blockchain network. It includes information required for a host to

connect and sync with the Polakdot network, for example, the initial nodes to communicate with, protocol identifier, initial state that the hosts agree,

etc. There are a set of core fields required by the Host and a set of extensions which are used by optionally implemented features of the Host. The

fields of chain specification are categorised in three parts:

1. ChainSpec

2. ChainSpec Extensions

3. Genesis State which is the only mandatory part of the chainspec.

A.3.1. Chain Spec

Chain specification contains information used by the Host to communicate with network participants and optionally send data to telemetry

endpoints.

Suppose that is a sequence of nibbles, then:PK = k ​, … k ​(1 n)

Enc ​ PK =HE() ​ ​ ​ ​⎩⎨
⎧ Nibbles ​4

PK = k ​, … k ​(1 n)

→

→

B

​ ​{ 16k ​ + k ​, … , 16k ​ + k ​(1 2 2i−1 2i)
k ​, 16k ​ + k ​, … , 16k ​ + k ​(1 2 3 2i 2i+1)

n = 2i
n = 2i + 1

The client specification contains the fields below. The values for Polkadot chain are specified:

name: The human readable name of the chain.

id: The id of the chain.

chainType: Possible values are Live , Development , Local .

bootNodes: A list of MultiAddress that belong to boot nodes of the chain. The list of boot nodes for Polkadot can be found here

telemetryEndpoints: Optional list of "(multiaddress, verbosity)" pairs of telemetry endpoints. The verbosity goes from 0 to 9 . With 0
being the mode with the lowest verbosity.

forkId: Optional fork id. Should most likely be left empty. Can be used to signal a fork on the network level when two chains have the same

genesis hash.

properties: Optional additional properties of the chain as subfields including token symbol, token decimals and address formats.

"name": "Polkadot"

"id": "polkadot"

"chainType": "Live"

"forkId": {}

 "properties": {
 "ss58Format": 0,
 "tokenDecimals": 10,
 "tokenSymbol": "DOT"
 }

https://github.com/libp2p/specs/blob/master/addressing/README.md#multiaddr-in-libp2p
https://raw.githubusercontent.com/paritytech/polkadot/master/node/service/chain-specs/polkadot.json

A.3.2. Chain Spec Extensions

ChainSpec Extensions are additional parameters customisable from the chainspec and correspond to optional features implemented in the Host.

Definition 190. Bad Blocks Header

Definition 191. Fork Blocks

A.3.3. Genesis State

The genesis state is a set of key-value pairs representing the initial state of the Polkadot state storage. It can be retrieved from the Polkadot

repository. While each of those key-value pairs offers important identifiable information to the Runtime, to the Polkadot Host they are a transparent

set of arbitrary chain- and network-dependent keys and values. The only exception to this are the :code (Section 2.6.2.) and :heappages (Section

2.6.3.1.) keys, which are used by the Polkadot Host to initialize the WASM environment and its Runtime. The other keys and values are unspecified

and solely depend on the chain and respectively its corresponding Runtime. On initialization the data should be inserted into the state storage with

the Host API (Section B.2.1.).

As such, Polkadot does not define a formal genesis block. Nonetheless for the compatibility reasons in several algorithms, the Polkadot Host defines

the genesis header (Definition 192). By the abuse of terminology, "genesis block" refers to the hypothetical parent of block number 1 which holds

genesis header as its header.

Definition 192. Genesis Header

BadBlocks describes a list of block header hashes that are known apriori to be bad (not belonging to canonical chain) by the host, so that the

host can explicitly avoid importing them. These block headers are always considered invalid and filtered out before importing the block:

where is a known invalid block header hash.

badBlocks = b ​, … b ​(0 n)

b ​i

ForkBlocks describes a list of expected block header hashes at certain block heights. They are used to set trusted checkpoints, i.e., the host

will refuse to import a block with a different hash at the given height. Forkblocks are useful mechanism to guide the Host to the right fork in

instances where the chain is bricked (possibly due to issues in runtime upgrades).

where is an apriori known valid block header hash at block height . The host is expected to accept no other block except at height .

forkBlocks = < b ​,H ​ >, … < b ​,H ​ >(0 0 n n)

b ​i H ​i b ​i H ​i

INFO

lightSyncState describes a check-pointing format for light clients. Its specification is currently Work-In-Progress.

The Polkadot genesis header is a data structure conforming to block header format (Definition 10). It contains the following values:

Table 4. Table of Genesis Header Values

Block header field Genesis Header Value

parent_hash 0

number 0

state_root Merkle hash of the state storage trie (Definition 29) after inserting the genesis state in it.

extrinsics_root 0

https://github.com/paritytech/polkadot/tree/master/node/service/chain-specs
https://spec.polkadot.network/chap-state#sect-loading-runtime-code
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-host-api#sect-storage-set
https://spec.polkadot.network/id-cryptography-encoding#defn-genesis-header
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-merkle-value

Definition 193. Code Substitutes

A.4. Erasure Encoding

A.4.1. Erasure Encoding

Bibliography
1. Saarinen MJ, Aumasson J-P. The BLAKE2 cryptographic hash and message authentication code (MAC) [Internet].

https://tools.ietf.org/html/rfc7693: -; 2015. Report No.: 7693. Available from: https://tools.ietf.org/html/rfc7693

2. Papadopoulos D, Wessels D, Huque S, Naor M, Včelák J, Reyzin L, et al. Making NSEC5 Practical for DNSSEC [Internet]. Cryptology ePrint

Archive, Paper 2017/099; 2017. Available from: https://eprint.iacr.org/2017/099

3. Goldberg S, Papadopoulos D, Vcelak J. Internet Draft - Verifiable Random Functions (VRFs) [Internet]. draft-goldbe-vrf-01. 2017. Available from:

https://tools.ietf.org/id/draft-goldbe-vrf-01.html

4. Josefsson S, Liusvaara I. Edwards-curve digital signature algorithm (EdDSA). In: Internet Research Task Force, Crypto Forum Research Group,

RFC. 2017.

5. de Valence H. Explicitly Defining and Modifying Ed25519 Validation Rules [Internet]. 2020. Available from:

https://github.com/zcash/zips/blob/master/zip-0215.rst

Block header field Genesis Header Value

digest 0

Code Substitutes is a list of pairs of block number and wasm_code . The given WASM code will be used to substitute the on-chain wasm code

starting with the given block number until the spec_version on-chain changes. The substitute code should be as close as possible to the on-

chain wasm code. A substitute should be used to fix a bug that can not be fixed with a runtime upgrade, if for example the runtime is constantly

panicking. Introducing new runtime apis isn't supported, because the node will read the runtime version from the on-chain wasm code. Use this

functionality only when there is no other way around and to only patch the problematic bug, the rest should be done with a on-chain runtime

upgrade.

INFO

Erasure Encoding has not been documented yet.

https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc7693
https://eprint.iacr.org/2017/099
https://tools.ietf.org/id/draft-goldbe-vrf-01.html
https://github.com/zcash/zips/blob/master/zip-0215.rst
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Appendix B: Host API

Description of the expected environment available for import by the Polkadot Runtime

B.1. Preliminaries
The Polkadot Host API is a set of functions that the Polkadot Host exposes to Runtime to access external functions needed for various reasons, such

as the Storage of the content, access and manipulation, memory allocation, and also efficiency. The encoding of each data type is specified or

referenced in this section. If the encoding is not mentioned, then the default Wasm encoding is used, such as little-endian byte ordering for integers.

Definition 194. Exposed Host API

Definition 195. Runtime Pointer

Definition 196. Runtime Pointer Size

Definition 197. Lexicographic ordering

B.2. Storage
Interface for accessing the storage from within the runtime.

Definition 198. State Version

By we refer to the API exposed by the Polkadot Host, which interacts, manipulates, and responds based on the state storage whose state

is set at the end of the execution of block .

RE ​B

B

The Runtime pointer type is an unsigned 32-bit integer representing a pointer to data in memory. This pointer is the primary way to exchange

data of fixed/known size between the Runtime and Polkadot Host.

The Runtime pointer-size type is an unsigned 64-bit integer representing two consecutive integers. The least significant is Runtime pointer

(Definition 195). The most significant provides the size of the data in bytes. This representation is the primary way to exchange data of

arbitrary/dynamic sizes between the Runtime and the Polkadot Host.

Lexicographic ordering refers to the ascending ordering of bytes or byte arrays, such as:

The functions are specified in each subsequent subsection for each category of those functions.

0, 0, 2 <[] 0, 1, 1 <[] 1 <[] 1, 1, 0 <[] 2 <[] …[]

DANGER

As of now, the storage API should silently ignore any keys that start with the :child_storage:default: prefix. This applies to reading and

writing. If the function expects a return value, then None (Definition 180) should be returned. See substrate issue #12461.

The state version, , dictates how a Merkle root should be constructed. The data structure is a varying type of the following format:v

{

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://github.com/paritytech/substrate/issues/12461

B.2.1. ext_storage_set

Sets the value under a given key into storage.

B.2.1.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

value : a pointer-size (Definition 196) containing the value.

B.2.2. ext_storage_get

Retrieves the value associated with the given key from storage.

B.2.2.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

result : a pointer-size (Definition 196) returning the SCALE encoded Option value (Definition 180) containing the value.

B.2.3. ext_storage_read

Gets the given key from storage, placing the value into a buffer and returning the number of bytes that the entry in storage has beyond the offset.

B.2.3.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

value_out : a pointer-size (Definition 196) containing the buffer to which the value will be written to. This function will never write more then
the length of the buffer, even if the value’s length is bigger.

offset : an u32 integer (typed as i32 due to wasm types) containing the offset beyond the value should be read from.

result : a pointer-size (Definition 196) pointing to a SCALE encoded Option value (Definition 180) containing an unsigned 32-bit integer

representing the number of bytes left at supplied offset . Returns None if the entry does not exist.

B.2.4. ext_storage_clear

Clears the storage of the given key and its value. Non-existent entries are silently ignored.

where indicates that the values of the keys should be inserted into the trie directly, and makes use of "node hashes" when calculating the

Merkle proof (Definition 28).

v = ​ ​{0
1

full values
node hashes

0 1

(func $ext_storage_set_version_1
 (param $key i64) (param $value i64))

(func $ext_storage_get_version_1
 (param $key i64) (result i64))

(func $ext_storage_read_version_1
 (param $key i64) (param $value_out i64) (param $offset i32) (result i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-state#defn-hashed-subvalue

B.2.4.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

B.2.5. ext_storage_exists

Checks whether the given key exists in storage.

B.2.5.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

return : an i32 integer value equal to 1 if the key exists or a value equal to 0 if otherwise.

B.2.6. ext_storage_clear_prefix

Clear the storage of each key/value pair where the key starts with the given prefix.

B.2.6.1. Version 1 - Prototype

Arguments

prefix : a pointer-size (Definition 196) containing the prefix.

B.2.6.2. Version 2 - Prototype

Arguments

prefix : a pointer-size (Definition 196) containing the prefix.

limit : a pointer-size (Definition 196) to an Option type (Definition 180) containing an unsigned 32-bit integer indicating the limit on how many

keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a pointer-size (Definition 196) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that

there are remaining keys, followed by the number of removed keys.

(func $ext_storage_clear_version_1
 (param $key_data i64))

(func $ext_storage_exists_version_1
 (param $key_data i64) (return i32))

(func $ext_storage_clear_prefix_version_1
 (param $prefix i64))

(func $ext_storage_clear_prefix_version_2
 (param $prefix i64) (param $limit i64)
 (return i64))

k

k = ​ ​{0
1

→ c

→ c

c

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.2.7. ext_storage_append

Append the SCALE encoded value to a SCALE encoded sequence (Definition 182) at the given key. This function assumes that the existing storage

item is either empty or a SCALE-encoded sequence and that the value to append is also SCALE encoded and of the same type as the items in the

existing sequence.

To improve performance, this function is allowed to skip decoding the entire SCALE encoded sequence and instead can just append the new item to

the end of the existing data and increment the length prefix .

B.2.7.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

value : a pointer-size (Definition 196) containing the value to be appended.

B.2.8. ext_storage_root

Compute the storage root.

B.2.8.1. Version 1 - Prototype

Arguments

return : a pointer-size (Definition 196) to a buffer containing the 256-bit Blake2 storage root.

B.2.8.2. Version 2 - Prototype

Arguments

version : the state version (Definition 198).

return : a pointer-size (Definition 196) to the buffer containing the 256-bit Blake2 storage root.

B.2.9. ext_storage_changes_root

B.2.9.1. Version 1 - Prototype

Enc ​SC
Len

CAUTION

If the storage item does not exist or is not SCALE encoded, the storage item will be set to the specified value, represented as a SCALE-

encoded byte array.

(func $ext_storage_append_version_1
 (param $key i64) (param $value i64))

(func $ext_storage_root_version_1
 (return i64))

(func $ext_storage_root_version_2
 (param $version i32) (return i64))

INFO

This function is not longer used and only exists for compatibility reasons.

(func $ext_storage_changes_root_version_1
 (param $parent_hash i64) (return i64))

https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

parent_hash : a pointer-size (Definition 196) to the SCALE encoded block hash.

return : a pointer-size (Definition 196) to an Option type (Definition 180) that’s always None.

B.2.10. ext_storage_next_key

Get the next key in storage after the given one in lexicographic order (Definition 197). The key provided to this function may or may not exist in

storage.

B.2.10.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) to the key.

return : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the next key in lexicographic order.

B.2.11. ext_storage_start_transaction

Start a new nested transaction. This allows to either commit or roll back all changes that are made after this call. For every transaction, there must

be a matching call to either ext_storage_rollback_transaction (Section B.2.12.) or ext_storage_commit_transaction (Section B.2.13.).

This is also effective for all values manipulated using the child storage API (Section B.3.). It’s legal to call this function multiple times in a row.

B.2.11.1. Version 1 - Prototype

Arguments

None.

B.2.12. ext_storage_rollback_transaction

Rollback the last transaction started by ext_storage_start_transaction (Section B.2.11.). Any changes made during that transaction are

discarded. It’s legal to call this function multiple times in a row.

B.2.12.1. Version 1 - Prototype

Arguments

None.

(func $ext_storage_next_key_version_1
 (param $key i64) (return i64))

CAUTION

This is a low-level API that is potentially dangerous as it can easily result in unbalanced transactions. Runtimes should use high-level storage

abstractions.

(func $ext_storage_start_transaction_version_1)

CAUTION

Panics if ext_storage_start_transaction (Section B.2.11.) was not called.

(func $ext_storage_rollback_transaction_version_1)

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-lexicographic-ordering
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#sect-ext-storage-rollback-transaction
https://spec.polkadot.network/chap-host-api#sect-ext-storage-commit-transaction
https://spec.polkadot.network/chap-host-api#sect-child-storage-api
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction

B.2.13. ext_storage_commit_transaction

Commit the last transaction started by ext_storage_start_transaction (Section B.2.11.). Any changes made during that transaction are

committed to the main state. It’s legal to call this function multiple times in a row.

B.2.13.1. Version 1 - Prototype

Arguments

None.

B.3. Child Storage
Interface for accessing the child storage from within the runtime.

Definition 199. Child Storage

B.3.1. ext_default_child_storage_set

Sets the value under a given key into the child storage.

B.3.1.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

value : a pointer-size (Definition 196) to the value.

B.3.2. ext_default_child_storage_get

Retrieves the value associated with the given key from the child storage.

B.3.2.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

CAUTION

Panics if ext_storage_start_transaction (Section B.2.11.) was not called.

(func $ext_storage_commit_transaction_version_1)

Child storage key is an unprefixed location of the child trie in the main trie.

(func $ext_default_child_storage_set_version_1
 (param $child_storage_key i64) (param $key i64) (param $value i64))

(func $ext_default_child_storage_get_version_1
 (param $child_storage_key i64) (param $key i64) (result i64))

https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#sect-ext-storage-start-transaction

result : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the value.

B.3.3. ext_default_child_storage_read

Gets the given key from storage, placing the value into a buffer and returning the number of bytes that the entry in storage has beyond the offset.

B.3.3.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

value_out : a pointer-size (Definition 196) to the buffer to which the value will be written to. This function will never write more then the length
of the buffer, even if the value’s length is bigger.

offset : an u32 integer (typed as i32 due to wasm types) containing the offset beyond the value should be read from.

result : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the number of bytes written into the

value_out buffer. Returns if the entry does not exists.

B.3.4. ext_default_child_storage_clear

Clears the storage of the given key and its value from the child storage. Non-existent entries are silently ignored.

B.3.4.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

B.3.5. ext_default_child_storage_storage_kill

Clears an entire child storage.

B.3.5.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

B.3.5.2. Version 2 - Prototype

Arguments

(func $ext_default_child_storage_read_version_1
 (param $child_storage_key i64) (param $key i64) (param $value_out i64)
 (param $offset i32) (result i64))

(func $ext_default_child_storage_clear_version_1
 (param $child_storage_key i64) (param $key i64))

(func $ext_default_child_storage_storage_kill_version_1
 (param $child_storage_key i64))

(func $ext_default_child_storage_storage_kill_version_2
 (param $child_storage_key i64) (param $limit i64)
 (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

limit : a pointer-size (Definition 196) to an Option type (Definition 180) containing an unsigned 32-bit integer indicating the limit on how many

keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a value equal to 1 if all the keys of the child storage have been deleted or a value equal to 0 if there are remaining keys.

B.3.5.3. Version 3 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

limit : a pointer-size (Definition 196) to an Option type (Definition 180) containing an unsigned 32-bit integer indicating the limit on how many

keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count toward the limit.

return : a pointer-size (Definition 196) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that

there are remaining keys, followed by the number of removed keys.

B.3.6. ext_default_child_storage_exists

Checks whether the given key exists in the child storage.

B.3.6.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

return : an i32 integer value equal to 1 if the key exists or a value equal to 0 if otherwise.

B.3.7. ext_default_child_storage_clear_prefix

Clears the child storage of each key/value pair where the key starts with the given prefix.

B.3.7.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

prefix : a pointer-size (Definition 196) to the prefix.

B.3.7.2. Version 2 - Prototype

(func $ext_default_child_storage_storage_kill_version_3
 (param $child_storage_key i64) (param $limit i64)
 (return i64))

k

k = ​ ​{0
1

→ c

→ c

c

(func $ext_default_child_storage_exists_version_1
 (param $child_storage_key i64) (param $key i64) (return i32))

(func $ext_default_child_storage_clear_prefix_version_1
 (param $child_storage_key i64) (param $prefix i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

prefix : a pointer-size (Definition 196) to the prefix.

limit : a pointer-size (Definition 196) to an Option type (Definition 180) containing an unsigned 32-bit integer indicating the limit on how many

keys should be deleted. No limit is applied if this is None. Any keys created during the current block execution do not count towards the limit.

return : a pointer-size (Definition 196) to the following variant, :

where 0 indicates that all keys of the child storage have been removed, followed by the number of removed keys, . The variant 1 indicates that

there are remaining keys, followed by the number of removed keys.

B.3.8. ext_default_child_storage_root

Commits all existing operations and computes the resulting child storage root.

B.3.8.1. Version 1 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

return : a pointer-size (Definition 196) to the SCALE encoded storage root.

B.3.8.2. Version 2 - Prototype

Arguments

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

version : the state version (Definition 198).

return : a pointer (Definition 195) to the buffer containing the 256-bit Blake2 storage root.

B.3.9. ext_default_child_storage_next_key

Gets the next key in storage after the given one in lexicographic order (Definition 197). The key provided to this function may or may not exist in

storage.

B.3.9.1. Version 1 - Prototype

Arguments

(func $ext_default_child_storage_clear_prefix_version_2
 (param $child_storage_key i64) (param $prefix i64)
 (param $limit i64) (return i64))

k

k = ​ ​{0
1

→ c

→ c

c

(func $ext_default_child_storage_root_version_1
 (param $child_storage_key i64) (return i64))

(func $ext_default_child_storage_root_version_2
 (param $child_storage_key i64) (param $version i32)
 (return i64))

(func $ext_default_child_storage_next_key_version_1
 (param $child_storage_key i64) (param $key i64) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-lexicographic-ordering

child_storage_key : a pointer-size (Definition 196) to the child storage key (Definition 199).

key : a pointer-size (Definition 196) to the key.

return : a pointer-size (Definition 196) to the SCALE encoded as defined in Definition 180 containing the next key in lexicographic order.

Returns if the entry cannot be found.

B.4. Crypto
Interfaces for working with crypto related types from within the runtime.

Definition 200. Key Type Identifier

Definition 201. ECDSA Verify Error

B.4.1. ext_crypto_ed25519_public_keys

Returns all ed25519 public keys for the given key identifier from the keystore.

B.4.1.1. Version 1 - Prototype

Cryptographic keys are stored in separate key stores based on their intended use case. The separate key stores are identified by a 4-byte

ASCII key type identifier. The following known types are available:

Table 5. Table of known key type identifiers

Id Description

acco Key type for the controlling accounts

babe Key type for the Babe module

gran Key type for the Grandpa module

imon Key type for the ImOnline module

audi Key type for the AuthorityDiscovery module

para Key type for the Parachain Validator Key

asgn Key type for the Parachain Assignment Key

EcdsaVerifyError is a varying data type (Definition 178) that specifies the error type when using ECDSA recovery functionality. The following

values are possible:

Table 6. Table of error types in ECDSA recovery

Id Description

0 Incorrect value of R or S

1 Incorrect value of V

2 Invalid signature

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-child-storage-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Arguments

key_type_id : a pointer (Definition 195) to the key type identifier (Definition 200).

return : a pointer-size (Definition 196) to an SCALE encoded 256-bit public keys.

B.4.2. ext_crypto_ed25519_generate

Generates an ed25519 key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.2.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key type identifier (Definition 200).

seed : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the BIP-39 seed which must be valid UTF8.

return : a pointer (Definition 195) to the buffer containing the 256-bit public key.

B.4.3. ext_crypto_ed25519_sign

Signs the given message with the ed25519 key that corresponds to the given public key and key type in the keystore.

B.4.3.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key type identifier (Definition 200).

key : a pointer to the buffer containing the 256-bit public key.

msg : a pointer-size (Definition 196) to the message that is to be signed.

return : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the 64-byte signature. This function

returns if the public key cannot be found in the key store.

B.4.4. ext_crypto_ed25519_verify

Verifies an ed25519 signature.

B.4.4.1. Version 1 - Prototype

Arguments

(func $ext_crypto_ed25519_public_keys_version_1
 (param $key_type_id i32) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_ed25519_generate_version_1
 (param $key_type_id i32) (param $seed i64) (return i32))

(func $ext_crypto_ed25519_sign_version_1
 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_ed25519_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

B.4.5. ext_crypto_ed25519_batch_verify

Registers an ed25519 signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.).

The result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature

is verified immediately.

B.4.5.1. Version 1

Arguments

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : an i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.6. ext_crypto_sr25519_public_keys

Returns all sr25519 public keys for the given key id from the keystore.

B.4.6.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key type identifier (Definition 200).

return : a pointer-size (Definition 196) to the SCALE encoded 256-bit public keys.

B.4.7. ext_crypto_sr25519_generate

Generates an sr25519 key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.7.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key identifier (Definition 200).

(func $ext_crypto_ed25519_batch_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_sr25519_public_keys_version_1
 (param $key_type_id i32) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_sr25519_generate_version_1
 (param $key_type_id i32) (param $seed i64) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id

seed : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the BIP-39 seed which must be valid UTF8.

return : a pointer (Definition 195) to the buffer containing the 256-bit public key.

B.4.8. ext_crypto_sr25519_sign

Signs the given message with the sr25519 key that corresponds to the given public key and key type in the keystore.

B.4.8.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key identifier (Definition 200).

key : a pointer to the buffer containing the 256-bit public key.

msg : a pointer-size (Definition 196) to the message that is to be signed.

return : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the 64-byte signature. This function

returns None if the public key cannot be found in the key store.

B.4.9. ext_crypto_sr25519_verify

Verifies an sr25519 signature.

B.4.9.1. Version 1 - Prototype

Arguments

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

B.4.9.2. Version 2 - Prototype

Arguments

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or a value equal to 0 if otherwise.

(func $ext_crypto_sr25519_sign_version_1
 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_sr25519_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_sr25519_verify_version_2
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.4.10. ext_crypto_sr25519_batch_verify

Registers a sr25519 signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.).

The result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature

is verified immediately.

B.4.10.1. Version 1

Arguments

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : an i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.11. ext_crypto_ecdsa_public_keys

Returns all ecdsa public keys for the given key id from the keystore.

B.4.11.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key type identifier (Definition 200).

return : a pointer-size (Definition 196) to the SCALE encoded 33-byte compressed public keys.

B.4.12. ext_crypto_ecdsa_generate

Generates an ecdsa key for the given key type using an optional BIP-39 seed and stores it in the keystore.

B.4.12.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key identifier (Definition 200).

seed : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the BIP-39 seed which must be valid UTF8.

return : a pointer (Definition 195) to the buffer containing the 33-byte compressed public key.

B.4.13. ext_crypto_ecdsa_sign

Signs the hash of the given message with the ecdsa key that corresponds to the given public key and key type in the keystore.

(func $ext_crypto_sr25519_batch_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_public_key_version_1
 (param $key_type_id i64) (return i64))

CAUTION

Panics if the key cannot be generated, such as when an invalid key type or invalid seed was provided.

(func $ext_crypto_ecdsa_generate_version_1
 (param $key_type_id i32) (param $seed i64) (return i32))

https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.4.13.1. Version 1 - Prototype

Arguments

key_type_id : a pointer (Definition 195) to the key identifier (Definition 200).

key : a pointer to the buffer containing the 33-byte compressed public key.

msg : a pointer-size (Definition 196) to the message that is to be signed.

return : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the signature. The signature is 65-bytes

in size, where the first 512-bits represent the signature and the other 8 bits represent the recovery ID. This function returns if the public key

cannot be found in the key store.

B.4.14. ext_crypto_ecdsa_sign_prehashed

Signs the prehashed message with the ecdsa key that corresponds to the given public key and key type in the keystore.

B.4.14.1. Version 1 - Prototype

Arguments

key_type_id : a pointer-size (Definition 195) to the key identifier (Definition 200).

key : a pointer to the buffer containing the 33-byte compressed public key.

msg : a pointer-size (Definition 196) to the message that is to be signed.

return : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the signature. The signature is 65-bytes

in size, where the first 512-bits represent the signature and the other 8 bits represent the recovery ID. This function returns if the public key

cannot be found in the key store.

B.4.15. ext_crypto_ecdsa_verify

Verifies the hash of the given message against an ECDSA signature.

B.4.15.1. Version 1 - Prototype

This function allows the verification of non-standard, overflowing ECDSA signatures, an implementation specific mechanism of the Rust

libsecp256k1 library, specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits
represent the signature and the other 8 bits represent the recovery ID.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.15.2. Version 2 - Prototype

(func $ext_crypto_ecdsa_sign_version_1
 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_ecdsa_sign_prehashed_version_1
 (param $key_type_id i32) (param $key i32) (param $msg i64) (return i64))

(func $ext_crypto_ecdsa_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-key-type-id
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Does not allow the verification of non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits
represent the signature and the other 8 bits represent the recovery ID.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.16. ext_crypto_ecdsa_verify_prehashed

Verifies the prehashed message against a ECDSA signature.

B.4.16.1. Version 1 - Prototype

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature. The signature is 65-bytes in size, where the first 512-bits
represent the signature and the other 8 bits represent the recovery ID.

msg : a pointer to the 32-bit prehashed message to be verified.

key : a pointer to the 33-byte compressed public key.

return : a i32 integer value equal 1 to if the signature is valid or a value equal to 0 if otherwise.

B.4.17. ext_crypto_ecdsa_batch_verify

Registers a ECDSA signature for batch verification. Batch verification is enabled by calling ext_crypto_start_batch_verify (Section B.4.20.).

The result of the verification is returned by ext_crypto_finish_batch_verify (Section B.4.21.). If batch verification is not enabled, the signature

is verified immediately.

B.4.17.1. Version 1

Arguments

sig : a pointer (Definition 195) to the buffer containing the 64-byte signature.

msg : a pointer-size (Definition 196) to the message that is to be verified.

key : a pointer to the buffer containing the 256-bit public key.

return : a i32 integer value equal to 1 if the signature is valid or batched or a value equal 0 to if otherwise.

B.4.18. ext_crypto_secp256k1_ecdsa_recover

Verify and recover a secp256k1 ECDSA signature.

B.4.18.1. Version 1 - Prototype

(func $ext_crypto_ecdsa_verify_version_2
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_verify_prehashed_version_1
 (param $sig i32) (param $msg i32) (param $key i32) (return i32))

(func $ext_crypto_ecdsa_batch_verify_version_1
 (param $sig i32) (param $msg i64) (param $key i32) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

This function can handle non-standard, overflowing ECDSA signatures, an implemenation specific mechanism of the Rust libsecp256k1 library,

specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

msg : a pointer (Definition 195) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 196) to the SCALE encoded Result (Definition 181). On success it contains the 64-byte recovered public key

or an error type (Definition 201) on failure.

B.4.18.2. Version 2 - Prototype

Does not handle non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature in RSV format. V should be either or .

msg : a pointer (Definition 195) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 196) to the SCALE encoded Result (Definition 181). On success it contains the 64-byte recovered public key

or an error type (Definition 201) on failure.

B.4.19. ext_crypto_secp256k1_ecdsa_recover_compressed

Verify and recover a secp256k1 ECDSA signature.

B.4.19.1. Version 1 - Prototype

This function can handle non-standard, overflowing ECDSA signatures, an implemenation specific mechanism of the Rust libsecp256k1 library,

specifically the parse_overflowing function.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

msg : a pointer (Definition 195) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). On success it contains the 33-byte recovered

public key in compressed form on success or an error type (Definition 201) on failure.

B.4.19.2. Version 2 - Prototype

Does not handle non-standard, overflowing ECDSA signatures.

Arguments

sig : a pointer (Definition 195) to the buffer containing the 65-byte signature in RSV format. V should be either 0/1 or 27/28 .

(func $ext_crypto_secp256k1_ecdsa_recover_version_1
 (param $sig i32) (param $msg i32) (return i64))

(func $ext_crypto_secp256k1_ecdsa_recover_version_2
 (param $sig i32) (param $msg i32) (return i64))

(func $ext_crypto_secp256k1_ecdsa_recover_compressed_version_1
 (param $sig i32) (param $msg i32) (return i64))

(func $ext_crypto_secp256k1_ecdsa_recover_compressed_version_2
 (param $sig i32) (param $msg i32) (return i64))

https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://github.com/paritytech/libsecp256k1
https://docs.rs/libsecp256k1/0.7.0/libsecp256k1/struct.Signature#method.parse_overflowing
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

msg : a pointer (Definition 195) to the buffer containing the 256-bit Blake2 hash of the message.

return : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). On success it contains the 33-byte recovered

public key in compressed form on success or an error type (Definition 201) on failure.

B.4.20. ext_crypto_start_batch_verify

Starts the verification extension. The extension is a separate background process and is used to parallel-verify signatures which are pushed to the

batch with ext_crypto_ed25519_batch_verify (Section B.4.5.), ext_crypto_sr25519_batch_verify (Section B.4.10.) or

ext_crypto_ecdsa_batch_verify (Section B.4.17.). Verification will start immediately and the Runtime can retrieve the result when calling

ext_crypto_finish_batch_verify (Section B.4.21.).

B.4.20.1. Version 1 - Prototype

Arguments

None.

B.4.21. ext_crypto_finish_batch_verify

Finish verifying the batch of signatures since the last call to this function. Blocks until all the signatures are verified.

B.4.21.1. Version 1 - Prototype

Arguments

return : an i32 integer value equal to 1 if all the signatures are valid or a value equal to 0 if one or more of the signatures are invalid.

B.5. Hashing
Interface that provides functions for hashing with different algorithms.

B.5.1. ext_hashing_keccak_256

Conducts a 256-bit Keccak hash.

B.5.1.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 256-bit hash result.

B.5.2. ext_hashing_keccak_512

Conducts a 512-bit Keccak hash.

(func $ext_crypto_start_batch_verify_version_1)

CAUTION

Panics if ext_crypto_start_batch_verify (Section B.4.20.) was not called.

(func $ext_crypto_finish_batch_verify_version_1
 (return i32))

(func $ext_hashing_keccak_256_version_1
 (param $data i64) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-ecdsa-verify-error
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-ed25519-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-sr25519-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-ecdsa-batch-verify
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-finish-batch-verify
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#sect-ext-crypto-start-batch-verify

B.5.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 512-bit hash result.

B.5.3. ext_hashing_sha2_256

Conducts a 256-bit Sha2 hash.

B.5.3.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 256-bit hash result.

B.5.4. ext_hashing_blake2_128

Conducts a 128-bit Blake2 hash.

B.5.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 128-bit hash result.

B.5.5. ext_hashing_blake2_256

Conducts a 256-bit Blake2 hash.

B.5.5.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 256-bit hash result.

B.5.6. ext_hashing_twox_64

Conducts a 64-bit xxHash hash.

(func $ext_hashing_keccak_512_version_1
 (param $data i64) (return i32))

(func $ext_hashing_sha2_256_version_1
 (param $data i64) (return i32))

(func $ext_hashing_blake2_128_version_1
 (param $data i64) (return i32))

(func $ext_hashing_blake2_256_version_1
 (param $data i64) (return i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.5.6.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 64-bit hash result.

B.5.7. ext_hashing_twox_128

Conducts a 128-bit xxHash hash.

B.5.7.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 128-bit hash result.

B.5.8. ext_hashing_twox_256

Conducts a 256-bit xxHash hash.

B.5.8.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the data to be hashed.

return : a pointer (Definition 195) to the buffer containing the 256-bit hash result.

B.6. Offchain
The Offchain Workers allow the execution of long-running and possibly non-deterministic tasks (e.g. web requests, encryption/decryption and

signing of data, random number generation, CPU-intensive computations, enumeration/aggregation of on-chain data, etc.) which could otherwise

require longer than the block execution time. Offchain Workers have their own execution environment. This separation of concerns is to make sure

that the block production is not impacted by the long-running tasks.

All data and results generated by Offchain workers are unique per node and nondeterministic. Information can be propagated to other nodes by

submitting a transaction that should be included in the next block. As Offchain workers runs on their own execution environment they have access to

their own separate storage. There are two different types of storage available which are defined in Definition 202 and Definition 203.

Definition 202. Persisted Storage

(func $ext_hashing_twox_64_version_1
 (param $data i64) (return i32))

(func $ext_hashing_twox_128
 (param $data i64) (return i32))

(func $ext_hashing_twox_256
 (param $data i64) (return i32))

Persistent storage is non-revertible and not fork-aware. It means that any value set by the offchain worker is persisted even if that block (at

which the worker is called) is reverted as non-canonical (meaning that the block was surpassed by a longer chain). The value is available for the

worker that is re-run at the new (different block with the same block number) and future blocks. This storage can be used by offchain workers

to handle forks and coordinate offchain workers running on different forks.

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage

Definition 203. Local Storage

Definition 204. HTTP Status Code

Definition 205. HTTP Error

B.6.1. ext_offchain_is_validator

Check whether the local node is a potential validator. Even if this function returns 1, it does not mean that any keys are configured or that the

validator is registered in the chain.

B.6.1.1. Version 1 - Prototype

Arguments

return : a i32 integer which is equal to 1 if the local node is a potential validator or a integer equal to 0 if it is not.

B.6.2. ext_offchain_submit_transaction

Given a SCALE encoded extrinsic, this function submits the extrinsic to the Host’s transaction pool, ready to be propagated to remote peers.

B.6.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the byte array storing the encoded extrinsic.

return : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). Neither on success or failure is there any additional

data provided. The cause of a failure is implementation specific.

Local storage is revertible and fork-aware. It means that any value set by the offchain worker triggered at a certain block is reverted if that

block is reverted as non-canonical. The value is NOT available for the worker that is re-run at the next or any future blocks.

HTTP status codes that can get returned by certain Offchain HTTP functions.

0 : the specified request identifier is invalid.

10 : the deadline for the started request was reached.

20 : an error has occurred during the request, e.g. a timeout or the remote server has closed the connection. On returning this error code,
the request is considered destroyed and must be reconstructed again.

100 -999 : the request has finished with the given HTTP status code.

HTTP error, , is a varying data type (Definition 178) and specifies the error types of certain HTTP functions. Following values are possible:E

E = ​ ​ ​⎩⎨
⎧0

1
2

The deadile was reached
There was an IO error while processing the request

The Id of the request is invalid

(func $ext_offchain_is_validator_version_1 (return i32))

(func $ext_offchain_submit_transaction_version_1
 (param $data i64) (return i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

B.6.3. ext_offchain_network_state

Returns the SCALE encoded, opaque information about the local node’s network state.

Definition 206. Opaque Network State

B.6.3.1. Version 1 - Prototype

Arguments

result : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). On success it contains the Opaque network state

structure (Definition 206). On failure, an empty value is yielded where its cause is implementation specific.

B.6.4. ext_offchain_timestamp

Returns the current timestamp.

B.6.4.1. Version 1 - Prototype

Arguments

result : an u64 integer (typed as i64 due to wasm types) indicating the current UNIX timestamp (Definition 171).

B.6.5. ext_offchain_sleep_until

Pause the execution until the deadline is reached.

B.6.5.1. Version 1 - Prototype

Arguments

deadline : an u64 integer (typed as i64 due to wasm types) specifying the UNIX timestamp (Definition 171).

B.6.6. ext_offchain_random_seed

Generates a random seed. This is a truly random non deterministic seed generated by the host environment.

B.6.6.1. Version 1 - Prototype

The Opaque network state structure, , is a SCALE encoded blob holding information about the the libp2p PeerId, , of the local node and

a list of libp2p Multiaddresses, , the node knows it can be reached at:

where

The information contained in this structure is naturally opaque to the caller of this function.

S P ​id

M ​, …M ​(0 n)

S = P ​, M ​, …M ​(id (0 n))

P ​ =id b ​, … b ​(0 n)

M = b ​, … b ​(0 n)

(func $ext_offchain_network_state_version_1 (result i64))

(func $ext_offchain_timestamp_version_1 (result i64))

(func $ext_offchain_sleep_until_version_1 (param $deadline i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-opaque-network-state
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time

Arguments

result : a pointer (Definition 195) to the buffer containing the 256-bit seed.

B.6.7. ext_offchain_local_storage_set

Sets a value in the local storage. This storage is not part of the consensus, it’s only accessible by the offchain worker tasks running on the same

machine and is persisted between runs.

B.6.7.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 202) and a value equal to 2 for

local storage (Definition 203).

key : a pointer-size (Definition 196) to the key.

value : a pointer-size (Definition 196) to the value.

B.6.8. ext_offchain_local_storage_clear

Remove a value from the local storage.

B.6.8.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 202) and a value equal to 2 for

local storage (Definition 203).

key : a pointer-size (Definition 196) to the key.

B.6.9. ext_offchain_local_storage_compare_and_set

Sets a new value in the local storage if the condition matches the current value.

B.6.9.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 202) and a value equal to 2 for

local storage (Definition 203).

key : a pointer-size (Definition 196) to the key.

old_value : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the old key.

(func $ext_offchain_random_seed_version_1 (result i32))

(func $ext_offchain_local_storage_set_version_1
 (param $kind i32) (param $key i64) (param $value i64))

(func $ext_offchain_local_storage_clear_version_1
 (param $kind i32) (param $key i64))

(fund $ext_offchain_local_storage_compare_and_set_version_1
 (param $kind i32) (param $key i64) (param $old_value i64)
 (param $new_value i64) (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type

new_value : a pointer-size (Definition 196) to the new value.

result : an i32 integer equal to 1 if the new value has been set or a value equal to 0 if otherwise.

B.6.10. ext_offchain_local_storage_get

Gets a value from the local storage.

B.6.10.1. Version 1 - Prototype

Arguments

kind : an i32 integer indicating the storage kind. A value equal to 1 is used for a persistent storage (Definition 202) and a value equal to 2 for

local storage (Definition 203).

key : a pointer-size (Definition 196) to the key.

result : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the value or the corresponding key.

B.6.11. ext_offchain_http_request_start

Initiates a HTTP request given by the HTTP method and the URL. Returns the Id of a newly started request.

B.6.11.1. Version 1 - Prototype

Arguments

method : a pointer-size (Definition 196) to the HTTP method. Possible values are “GET” and “POST”.

uri : a pointer-size (Definition 196) to the URI.

meta : a future-reserved field containing additional, SCALE encoded parameters. Currently, an empty array should be passed.

result : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181) containing the i16 ID of the newly started request.

On failure no additionally data is provided. The cause of failure is implementation specific.

B.6.12. ext_offchain_http_request_add_header

Append header to the request. Returns an error if the request identifier is invalid, http_response_wait has already been called on the specified

request identifier, the deadline is reached or an I/O error has happened (e.g. the remote has closed the connection).

B.6.12.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

name : a pointer-size (Definition 196) to the HTTP header name.

value : a pointer-size (Definition 196) to the HTTP header value.

result : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). Neither on success or failure is there any additional

data provided. The cause of failure is implementation specific.

(func $ext_offchain_local_storage_get_version_1
 (param $kind i32) (param $key i64) (result i64))

(func $ext_offchain_http_request_start_version_1
 (param $method i64) (param $uri i64) (param $meta i64) (result i64))

(func $ext_offchain_http_request_add_header_version_1
 (param $request_id i32) (param $name i64) (param $value i64) (result i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-offchain-persistent-storage
https://spec.polkadot.network/chap-host-api#defn-offchain-local-storage
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type

B.6.13. ext_offchain_http_request_write_body

Writes a chunk of the request body. Returns a non-zero value in case the deadline is reached or the chunk could not be written.

B.6.13.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

chunk : a pointer-size (Definition 196) to the chunk of bytes. Writing an empty chunk finalizes the request.

deadline : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the UNIX timestamp (Definition 171).

Passing None blocks indefinitely.

result : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). On success, no additional data is provided. On error

it contains the HTTP error type (Definition 205).

B.6.14. ext_offchain_http_response_wait

Returns an array of request statuses (the length is the same as IDs). Note that if deadline is not provided the method will block indefinitely,

otherwise unready responses will produce DeadlineReached status.

B.6.14.1. Version 1 - Prototype

Arguments

ids : a pointer-size (Definition 196) to the SCALE encoded array of started request IDs.

deadline : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the UNIX timestamp (Definition 171).

Passing None blocks indefinitely.

result : a pointer-size (Definition 196) to the SCALE encoded array of request statuses (Definition 204).

B.6.15. ext_offchain_http_response_headers

Read all HTTP response headers. Returns an array of key/value pairs. Response headers must be read before the response body.

B.6.15.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

result : a pointer-size (Definition 196) to a SCALE encoded array of key/value pairs.

B.6.16. ext_offchain_http_response_read_body

Reads a chunk of body response to the given buffer. Returns the number of bytes written or an error in case a deadline is reached or the server

closed the connection. If 0 is returned it means that the response has been fully consumed and the request_id is now invalid. This implies that

response headers must be read before draining the body.

(func $ext_offchain_http_request_write_body_version_1
 (param $request_id i32) (param $chunk i64) (param $deadline i64) (result i64))

(func $ext_offchain_http_response_wait_version_1
 (param $ids i64) (param $deadline i64) (result i64))

(func $ext_offchain_http_response_headers_version_1
 (param $request_id i32) (result i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-http-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-http-status-code
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

B.6.16.1. Version 1 - Prototype

Arguments

request_id : an i32 integer indicating the ID of the started request.

buffer : a pointer-size (Definition 196) to the buffer where the body gets written to.

deadline : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the UNIX timestamp (Definition 171).

Passing None will block indefinitely.

result : a pointer-size (Definition 196) to the SCALE encoded Result value (Definition 181). On success it contains an i32 integer specifying the

number of bytes written or a HTTP error type (Definition 205) on failure.

B.7. Offchain Index
Interface that provides functions to access the Offchain DB through offchain indexing.

B.7.1. Offchain_index_set

Write a key-value pair to the Offchain DB in a buffered fashion.

B.7.1.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

value : a pointer-size (Definition 196) containing the value.

B.7.2. Offchain_index_clear

Remove a key and its associated value from the Offchain DB.

B.7.2.1. Version 1 - Prototype

Arguments

key : a pointer-size (Definition 196) containing the key.

B.8. Trie
Interface that provides trie related functionality.

B.8.1. ext_trie_blake2_256_root

Compute a 256-bit Blake2 trie root formed from the iterated items.

B.8.1.1. Version 1 - Prototype

(func $ext_offchain_http_response_read_body_version_1
 (param $request_id i32) (param $buffer i64) (param $deadline i64) (result i64))

(func $ext_offchain_index_set_version_1
 (param $key i64) (param $value i64))

(func $ext_offchain_index_set_version_1
 (param $key i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-unix-time
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-host-api#defn-http-error
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments

data : a pointer-size (Definition 196) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing arbitrary key/value pairs (tuples).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root.

B.8.1.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 196) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing arbitrary key/value pairs (tuples).

version : the state version (Definition 198).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root.

B.8.2. ext_trie_blake2_256_ordered_root

Compute a 256-bit Blake2 trie root formed from the enumerated items.

B.8.2.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded

array containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact

encoded integers (Definition 188).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root result.

B.8.2.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 196) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded

array containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact

encoded integers (Definition 188).

version : the state version (Definition 198).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root result.

B.8.3. ext_trie_keccak_256_root

Compute a 256-bit Keccak trie root formed from the iterated items.

(func $ext_trie_blake2_256_root_version_1
 (param $data i64) (result i32))

(func $ext_trie_blake2_256_root_version_2
 (param $data i64) (param $version i32)
 (result i32))

(func $ext_trie_blake2_256_ordered_root_version_1
 (param $data i64) (result i32))

(func $ext_trie_blake2_256_ordered_root_version_2
 (param $data i64) (param $version i32)
 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.8.3.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing arbitrary key/value pairs.

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root.

B.8.3.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 196) to the iterated items from which the trie root gets formed. The items consist of a SCALE encoded array

containing arbitrary key/value pairs.

version : the state version (Definition 198).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root.

B.8.4. ext_trie_keccak_256_ordered_root

Compute a 256-bit Keccak trie root formed from the enumerated items.

B.8.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded

array containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact

encoded integers (Definition 188).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root result.

B.8.4.2. Version 2 - Prototype

Arguments

data : a pointer-size (Definition 196) to the enumerated items from which the trie root gets formed. The items consist of a SCALE encoded

array containing only values, where the corresponding key of each value is the index of the item in the array, starting at 0. The keys are compact

encoded integers (Definition 188).

version : the state version (Definition 198).

result : a pointer (Definition 195) to the buffer containing the 256-bit trie root result.

(func $ext_trie_keccak_256_root_version_1
 (param $data i64) (result i32))

(func $ext_trie_keccak_256_root_version_2
 (param $data i64) (param $version i32)
 (result i32))

(func $ext_trie_keccak_256_ordered_root_version_1
 (param $data i64) (result i32))

(func $ext_trie_keccak_256_ordered_root_version_2
 (param $data i64) (param $version i32)
 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-sc-len-encoding
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer

B.8.5. ext_trie_blake2_256_verify_proof

Verifies a key/value pair against a Blake2 256-bit merkle root.

B.8.5.1. Version 1 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 196) to an array containing the node proofs.

key : a pointer-size (Definition 196) to the key.

value : a pointer-size (Definition 196) to the value.

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.5.2. Version 2 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 196) to an array containing the node proofs.

key : a pointer-size (Definition 196) to the key.

value : a pointer-size (Definition 196) to the value.

version : the state version (Definition 198).

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.6. ext_trie_keccak_256_verify_proof

Verifies a key/value pair against a Keccak 256-bit merkle root.

B.8.6.1. Version 1 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 196) to an array containing the node proofs.

key : a pointer-size (Definition 196) to the key.

(func $ext_trie_blake2_256_verify_proof_version_1
 (param $root i32) (param $proof i64)
 (param $key i64) (param $value i64)
 (result i32))

(func $ext_trie_blake2_256_verify_proof_version_2
 (param $root i32) (param $proof i64)
 (param $key i64) (param $value i64)
 (param $version i32) (result i32))

(func $ext_trie_keccak_256_verify_proof_version_1
 (param $root i32) (param $proof i64)
 (param $key i64) (param $value i64)
 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

value : a pointer-size (Definition 196) to the value.

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.8.6.2. Version 2 - Prototype

Arguments

root : a pointer to the 256-bit merkle root.

proof : a pointer-size (Definition 196) to an array containing the node proofs.

key : a pointer-size (Definition 196) to the key.

value : a pointer-size (Definition 196) to the value.

version : the state version (Definition 198).

return : a value equal to 1 if the proof could be successfully verified or a value equal to 0 if otherwise.

B.9. Miscellaneous
Interface that provides miscellaneous functions for communicating between the runtime and the node.

B.9.1. ext_misc_print_num

Print a number.

B.9.1.1. Version 1 - Prototype

Arguments

value : the number to be printed.

B.9.2. ext_misc_print_utf8

Print a valid UTF8 encoded buffer.

B.9.2.1. Version 1 - Prototype

Arguments:

: a pointer-size (Definition 196) to the valid buffer to be printed.

B.9.3. ext_misc_print_hex

Print any buffer in hexadecimal representation.

B.9.3.1. Version 1 - Prototype

(func $ext_trie_keccak_256_verify_proof_version_2
 (param $root i32) (param $proof i64)
 (param $key i64) (param $value i64)
 (param $version i32) (result i32))

(func $ext_misc_print_num_version_1 (param $value i64))

(func $ext_misc_print_utf8_version_1 (param $data i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-state-version
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Arguments:

data : a pointer-size (Definition 196) to the buffer to be printed.

B.9.4. ext_misc_runtime_version

Extract the Runtime version of the given Wasm blob by calling Core_version (Section C.4.1.). Returns the SCALE encoded runtime version or None

(Definition 180) if the call fails. This function gets primarily used when upgrading Runtimes.

B.9.4.1. Version 1 - Prototype

Arguments

data : a pointer-size (Definition 196) to the Wasm blob.

result : a pointer-size (Definition 196) to the SCALE encoded Option value (Definition 180) containing the Runtime version of the given Wasm

blob which is encoded as a byte array.

B.10. Allocator
The Polkadot Runtime does not include a memory allocator and relies on the Host API for all heap allocations. The beginning of this heap is marked

by the __heap_base symbol exported by the Polkadot Runtime. No memory should be allocated below that address, to avoid clashes with the stack

and data section. The same allocator made accessible by this Host API should be used for any other WASM memory allocations and deallocations

outside the runtime e.g. when passing the SCALE-encoded parameters to Runtime API calls.

B.10.1. ext_allocator_malloc

Allocates the given number of bytes and returns the pointer to that memory location.

B.10.1.1. Version 1 - Prototype

Arguments

size : the size of the buffer to be allocated.

result : a pointer (Definition 195) to the allocated buffer.

B.10.2. ext_allocator_free

Free the given pointer.

B.10.2.1. Version 1 - Prototype

Arguments

(func $ext_misc_print_hex_version_1 (param $data i64))

CAUTION

Calling this function is very expensive and should only be done very occasionally. For getting the runtime version, it requires instantiating the

Wasm blob (Section 2.6.2.) and calling the Core_version function (Section C.4.1.) in this blob.

(func $ext_misc_runtime_version_version_1 (param $data i64) (result i64))

(func $ext_allocator_malloc_version_1 (param $size i32) (result i32))

(func $ext_allocator_free_version_1 (param $ptr i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-state#sect-loading-runtime-code
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

ptr : a pointer (Definition 195) to the memory buffer to be freed.

B.11. Logging
Interface that provides functions for logging from within the runtime.

Definition 207. Log Level

B.11.1. ext_logging_log

Request to print a log message on the host. Note that this will be only displayed if the host is enabled to display log messages with given level and

target.

B.11.1.1. Version 1 - Prototype

Arguments

level : the log level (Definition 207).

target : a pointer-size (Definition 196) to the string which contains the path, module or location from where the log was executed.

message : a pointer-size (Definition 196) to the UTF-8 encoded log message.

B.11.2. ext_logging_max_level

Returns the max logging level used by the host.

B.11.2.1. Version 1 - Prototype

Arguments

None

Returns

result : the max log level (Definition 207) used by the host.

B.12. Abort Handler
Interface for aborting the execution of the runtime.

The Log Level, , is a varying data type (Definition 178) and implies the emergency of the log. Possible log levels and the corresponding

identifier is as follows:

L

L = ​ ​ ​

⎩
⎨
⎧0

1
2
3
4

Error = 1
Warn = 2
Info = 3

Debug = 4
Trace = 5

(func $ext_logging_log_version_1
 (param $level i32) (param $target i64) (param $message i64))

(func $ext_logging_max_level_version_1
 (result i32))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer
https://spec.polkadot.network/chap-host-api#defn-logging-log-level
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-host-api#defn-logging-log-level
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

B.12.1. ext_panic_handler_abort_on_panic

Aborts the execution of the runtime with a given message. Note that the message will be only displayed if the host is enabled to display those types

of messages, which is implementation specific.

B.12.1.1. Version 1 - Prototype

Arguments

message : a pointer-size (Definition 196) to the UTF-8 encoded message.

(func $ext_panic_handler_abort_on_panic_version_1
 (param $message i64))

https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size

Appendix C: Runtime API

Description of how to interact with the Runtime through its exported functions

C.1. General Information
The Polkadot Host assumes that at least the constants and functions described in this Chapter are implemented in the Runtime Wasm blob.

It should be noted that the API can change through the Runtime updates. Therefore, a host should check the API versions of each module returned

in the api field by Core_version (Section C.4.1.) after every Runtime upgrade and warn if an updated API is encountered and that this might

require an update of the host.

This section describes all Runtime API functions alongside their arguments and the return values. The functions are organized into modules, with

each being versioned independently.

C.1.1. JSON-RPC API for external services

Polkadot Host implementers are encouraged to implement an API in order for external, third-party services to interact with the node. The JSON-RPC

Interface for Polkadot Nodes (PSP6) is a Polkadot Standard Proposal for such an API and makes it easier to integrate the node with existing tools

available in the Polkadot ecosystem, such as polkadot.js.org. The Runtime API has a few modules designed specifically for use in the official RPC

API.

C.2. Runtime Constants

C.2.1. __heap_base

This constant indicates the beginning of the heap in memory. The space below is reserved for the stack and the data section. For more details

please refer to Section 2.6.3.1..

C.3. Runtime Call Convention
Definition 208. Runtime API Call Convention

See Section 2.6.3. for more information about the behavior of the Wasm Runtime. Also, note that any storage changes must be fork-aware (Section

2.4.5.).

C.4. Module Core

The Runtime API Call Convention describes that all functions receive and return SCALE-encoded data and, as a result, have the following

prototype signature:

where ptr points to the SCALE encoded tuple of the parameters passed to the function and len is the length of this data, while result is a

pointer-size (Definition Definition 196) to the SCALE-encoded return data.

(func $generic_runtime_entry
 (param $ptr i32) (parm $len i32) (result i64))

NOTE

This section describes Version 3 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://github.com/w3f/PSPs/blob/master/PSPs/drafts/psp-6.md
https://polkadot.js.org/
https://spec.polkadot.network/chap-state#sect-memory-management
https://spec.polkadot.network/chap-state#sect-code-executor
https://spec.polkadot.network/chap-state#sect-managing-multiple-states
https://spec.polkadot.network/chap-host-api#defn-runtime-pointer-size
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.4.1. Core_version

Returns the version identifiers of the Runtime. This function can be used by the Polkadot Host implementation when it seems appropriate, such as

for the JSON-RPC API as described in Section C.1.1..

Arguments

None

Return

A data structure of the following format:

Table 7. Details of the version that the data type returns from the Runtime function.

Name Type Description

spec_name String Runtime identifier

impl_name String Name of the implementation (e.g. C++)

authoring_version Unsigned 32-bit integer Version of the authorship interface

spec_version Unsigned 32-bit integer Version of the Runtime specification

impl_version Unsigned 32-bit integer Version of the Runtime implementation

apis ApiVersions (Definition 209) List of supported APIs along with their version

transaction_version Unsigned 32-bit integer Version of the transaction format

state_version Unsigned 8-bit integer Version of the trie format

Definition 209. ApiVersions

Requires Core_initialize_block to be called beforehand.

C.4.2. Core_execute_block

This function executes a full block and all its extrinsics and updates the state accordingly. Additionally, some integrity checks are executed, such as

validating if the parent hash is correct and that the transaction root represents the transactions. Internally, this function performs an operation

similar to the process described in Build-Block, by calling Core_initialize_block ,BlockBuilder_apply_extrinsics and

BlockBuilder_finalize_block .

This function should be called when a fully complete block is available that is not actively being built on, such as blocks received from other peers.

State changes resulting from calling this function are usually meant to persist when the block is imported successfully.

Additionally, the seal digest in the block header, as described in Definition 11, must be removed by the Polkadot host before submitting the block.

Arguments

NOTE

For newer Runtimes, the version identifiers can be read directly from the Wasm blob in the form of custom sections (Section 2.6.3.4.). That

method of retrieving this data should be preferred since it involves significantly less overhead.

ApiVersions is a specialized type for the (Section C.4.1.) function entry. It represents an array of tuples, where the first value of the tuple is an

array of 8-bytes containing the Blake2b hash of the API name. The second value of the tuple is the version number of the corresponding API.

​ ​

ApiVersions :=

T :=

(T ​, … ,T ​)0 n

((b ​, … , b ​), UINT32)0 7

https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#defn-rt-apisvec
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-digest
https://spec.polkadot.network/chap-state#sect-runtime-version-custom-section
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

A block represented as a tuple consisting of a block header, as described in Definition 10, and the block body, as described in Definition 13.

Return

None.

C.4.3. Core_initialize_block

Sets up the environment required for building a new block as described in Build-Block.

Arguments

The header of the new block as defined in Definition 10. The values , and are left empty.

Return

None.

C.5. Module Metadata

C.5.1. Metadata_metadata

Returns native Runtime metadata in an opaque form. This function can be used by the Polkadot Host implementation when it seems appropriate,

such as for the JSON-RPC API as described in Section C.1.1., and returns all the information necessary to build valid transactions.

Arguments

None.

Return

The scale-encoded (Section A.2.2.) runtime metadata as described in Chapter 12.

C.5.2. Metadata_metadata_at_version

Returns native Runtime metadata in an opaque form at a particular version.

Arguments

Metadata version represented by an unsigned 32-bit integer.

Return

The scale-encoded (Section A.2.2.) runtime metadata as described in Chapter 12 at the particular version.

C.5.3. Metadata_metadata_versions

Returns supported metadata versions.

Arguments

None.

Return

A vector of supported metadata versions of type vec<u32> .

H ​r H ​e H ​d

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-metadata
https://spec.polkadot.network/id-cryptography-encoding#sect-scale-codec
https://spec.polkadot.network/sect-metadata
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.6. Module BlockBuilder

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.6.1. BlockBuilder_apply_extrinsic

Apply the extrinsic outside of the block execution function. This does not attempt to validate anything regarding the block, but it builds a list of

transaction hashes.

Arguments

A byte array of varying sizes containing the opaque extrinsic.

Return

Returns the varying datatype ApplyExtrinsicResult as defined in Definition 210. This structure lets the block builder know whether an extrinsic

should be included in the block or rejected.

Definition 210. ApplyExtrinsicResult

Definition 211. DispatchOutcome

Definition 212. DispatchError

NOTE

This section describes Version 4 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

ApplyExtrinsicResult is a varying data type as defined in Definition 181. This structure can contain multiple nested structures, indicating either

module dispatch outcomes or transaction invalidity errors.

Table 8. Possible values of varying data type ApplyExtrinsicResult.

Id Description Type

0 Outcome of dispatching the extrinsic. DispatchOutcome (Definition 211)

1 Possible errors while checking the validity of a transaction. TransactionValidityError (Definition 214)

INFO

As long as a DispatchOutcome (Definition 211) is returned, the extrinsic is always included in the block, even if the outcome is a dispatch error.

Dispatch errors do not invalidate the block and all state changes are persisted.

DispatchOutcome is the varying data type as defined in Definition 181.

Table 9. Possible values of varying data type DispatchOutcome.

Id Description Type

0 Extrinsic is valid and was submitted successfully. None

1 Possible errors while dispatching the extrinsic. DispatchError (Definition 212)

DispatchError is a varying data type as defined in Definition 178. Indicates various reasons why a dispatch call failed.

Table 10. Possible values of varying data type DispatchError.

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rte-apply-extrinsic-result
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-outcome
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-outcome
https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-error
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 213. CustomModuleError

Definition 214. TransactionValidityError

Definition 215. InvalidTransaction

Id Description Type

0 Some unknown error occurred. SCALE encoded byte array containing a valid UTF-8 sequence.

1 Failed to look up some data. None

2 A bad origin. None

3 A custom error in a module. CustomModuleError (Definition 213)

CustomModuleError is a tuple appended after a possible error in as defined in Definition 212.

Table 11. Possible values of varying data type CustomModuleError.

Name Description Type

Index
Module index matching the metadata

module index.
Unsigned 8-bit integer.

Error Module-specific error value. Unsigned 8-bit integer

Message Optional error message.
Varying data type Option (Definition 180). The optional value is a SCALE-encoded

byte array containing a valid UTF-8 sequence.

INFO

Whenever TransactionValidityError (Definition 214) is returned, the contained error type will indicate whether an extrinsic should be outright

rejected or requested for a later block. This behavior is clarified further in Definition 215 and respectively Definition 216.

TransactionValidityError is a varying data type as defined in Definition 178. It indicates possible errors that can occur while checking the

validity of a transaction.

Table 12. Possible values of varying data type TransactionValidityError.

Id Description Type

0 Transaction is invalid. InvalidTransaction (Definition 215)

1 Transaction validity can’t be determined. UnknownTransaction (Definition 216)

InvalidTransaction is a varying data type as defined in Definition 178 and specifies the invalidity of the transaction in more detail.

Table 13. Possible values of varying data type InvalidTransaction.

Id Description Type Reject

0 Call of the transaction is not expected. None Yes

1 General error to do with the inability to pay some fees (e.g., account balance too low). None Yes

https://spec.polkadot.network/chap-runtime-api#defn-rte-custom-module-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-dispatch-error
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#defn-rte-invalid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-unknown-transaction
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/chap-runtime-api#defn-rte-invalid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-unknown-transaction
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

Definition 216. UnknownTransaction

C.6.2. BlockBuilder_finalize_block

Finalize the block - it is up to the caller to ensure that all header fields are valid except for the state root. State changes resulting from calling this

function are usually meant to persist upon successful execution of the function and appending of the block to the chain.

Arguments

None.

Return

The header of the new block as defined in Definition 10.

C.6.3. BlockBuilder_inherent_extrinisics :

Generates the inherent extrinsics, which are explained in more detail in Section 2.3.3.. This function takes a SCALE-encoded hash table as defined in

Definition 182 and returns an array of extrinsics. The Polkadot Host must submit each of those to the BlockBuilder_apply_extrinsic , described
in Section C.6.1.. This procedure is outlined in Build-Block.

Arguments

A Inherents-Data structure as defined in Definition 15.

Return

A byte array of varying sizes containing extrinisics. Each extrinsic is a byte array of varying size.

Id Description Type Reject

2 General error to do with the transaction not yet being valid (e.g., nonce too high). None No

3 General error to do with the transaction being outdated (e.g., nonce too low). None Yes

4 General error to do with the transactions’ proof (e.g., signature) None Yes

5 The transaction birth block is ancient. None Yes

6 The transaction would exhaust the resources of the current block. None No

7 Some unknown error occurred. Unsigned 8-bit integer Yes

8 An extrinsic with mandatory dispatch resulted in an error. None Yes

9 A transaction with a mandatory dispatch (only inherents are allowed to have mandatory dispatch). None Yes

UnknownTransaction is a varying data type as defined in Definition 178 and specifies the unknown invalidity of the transaction in more detail.

Table 14. Possible values of varying data type UnknownTransaction.

Id Description Type Reject

0 Could not look up some information that is required to validate the transaction. None Yes

1 No validator found for the given unsigned transaction. None Yes

2 Any other custom unknown validity that is not covered by this type. Unsigned 8-bit integer Yes

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#sect-inherents
https://spec.polkadot.network/id-cryptography-encoding#defn-scale-list
https://spec.polkadot.network/chap-runtime-api#sect-rte-apply-extrinsic
https://spec.polkadot.network/sect-block-production#algo-build-block
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

C.6.4. BlockBuilder_check_inherents

Checks whether the provided inherent is valid. This function can be used by the Polkadot Host when deemed appropriate, e.g., during the block-

building process.

Arguments

A block represented as a tuple consisting of a block header as described in Definition 10 and the block body as described in Definition 13.

A Inherents-Data structure as defined in Definition 15.

Return

A data structure of the following format:

where

 is a boolean indicating whether the check was successful.

 is a boolean indicating whether a fatal error was encountered.

 is a Inherents-Data structure as defined in Definition 15 containing any errors created by this Runtime function.

C.7. Module TaggedTransactionQueue

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.7.1. TaggedTransactionQueue_validate_transaction

This entry is invoked against extrinsics submitted through a transaction network message (Section 4.8.5.) or by an off-chain worker through the

Host API (Section B.6.2.).

It indicates if the submitted blob represents a valid extrinsics, the order in which it should be applied and if it should be gossiped to other peers.

Furthermore, this function gets called internally when executing blocks with the runtime function as described in Section C.4.2..

Arguments

The source of the transaction as defined in Definition 217.

A byte array that contains the transaction.

The hash of the parent of the block that the transaction is included in.

Definition 217. TransactionSource

o, f ​,e(e)

o

f ​e

e

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

TransactionSource is an enum describing the source of a transaction and can have one of the following values:

Table 15. The TransactionSource enum

Id Name Description

0 InBlock Transaction is already included in a block.

1 Local Transaction is coming from a local source, e.g. off-chain worker.

2 External Transaction has been received externally, e.g. over the network.

https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-state#defn-block-body
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/chap-state#defn-inherent-data
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-networking#sect-msg-transactions
https://spec.polkadot.network/chap-host-api#sect-ext-offchain-submit-transaction
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-execute-block
https://spec.polkadot.network/chap-runtime-api#defn-transaction-source
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Return

This function returns a Result as defined in Definition 181 which contains the type ValidTransaction as defined in Definition 218 on success and

the type TransactionValidityError as defined in Definition 214 on failure.

Definition 218. ValidTransaction

:::

C.8. Module OffchainWorkerApi

Does not require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.8.1. OffchainWorkerApi_offchain_worker

Starts an off-chain worker and generates extrinsics. [To do: when is this called?]

Arguments

The block header as defined in Definition 10.

Return

None.

ValidTransaction is a tuple that contains information concerning a valid transaction.

Table 16. The tuple provided by in the case the transaction is judged to be valid.

Name Description Type

Priority
Determines the ordering of two transactions that have all their dependencies (required tags) are

satisfied.

Unsigned 64-bit

integer

Requires
List of tags specifying extrinsics which should be applied before the current extrinsics can be

applied.

Array containing

inner arrays

Provides
Informs Runtime of the extrinsics depending on the tags in the list that can be applied after current

extrinsics are being applied. Describes the minimum number of blocks for the validity to be correct.

Array containing

inner arrays

Longevity After this period, the transaction should be removed from the pool or revalidated.
Unsigned 64-bit

integer

Propagate A flag indicating if the transaction should be gossiped to other peers. Boolean

INFO

If Propagate is set to false the transaction will still be considered for inclusion in blocks that are authored on the current node, but should not

be gossiped to other peers.

INFO

If this function gets called by the Polkadot Host in order to validate a transaction received from peers, the Polkadot Host disregards and

rewinds state changes resulting in such a call.

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/id-cryptography-encoding#defn-result-type
https://spec.polkadot.network/chap-runtime-api#defn-valid-transaction
https://spec.polkadot.network/chap-runtime-api#defn-rte-transaction-validity-error
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-state#defn-block-header
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.9. Module ParachainHost

C.9.1. ParachainHost_validators

Returns the validator set at the current state. The specified validators are responsible for backing parachains for the current state.

Arguments

None.

Return

An array of public keys representing the validators.

C.9.2. ParachainHost_validator_groups

Returns the validator groups (Definition 126) used during the current session. The validators in the groups are referred to by the validator set Id

(Definition 69).

Arguments

None

Return

An array of tuples, , of the following format:

where

 is an array of the validator set Ids (Definition 69).

 indicates the block number where the session started.

 indicates how often groups rotate. 0 means never.

 indicates the current block number.

C.9.3. ParachainHost_availability_cores

Returns information on all availability cores (Definition 125).

Arguments

None

Return

An array of core states, S, of the following format:

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

T

T = I,G()

I = v ​, … v ​(n m)

G = B ​, f ,B ​(s c)

I

B ​s

f

B ​c

S = ​ ​ ​⎩⎨
⎧0

1
2

→
→
→

C ​o

C ​s

ϕ

C ​ =o n ​,B ​,B ​,n ​, b,G ​,C ​,C ​(u o t t i h d)

C ​ =s P ​d,C ​(i i)

https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chapter-anv#defn-availability-core
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

where

 specifies the core state. 0 indicates that the core is occupied, 1 implies it’s currently free but scheduled and given the opportunity to

occupy and 2 implies it’s free and there’s nothing scheduled.

 is an Option value (Definition 180) which can contain a value if the core was freed by the Runtime and indicates the assignment that

is next scheduled on this core. An empty value indicates there is nothing scheduled.

 indicates the relay chain block number at which the core got occupied.

 indicates the relay chain block number the core will time-out at, if any.

 is an Option value (Definition 180) which can contain a value if the core is freed by a time-out and indicates the assignment that is

next scheduled on this core. An empty value indicates there is nothing scheduled.

 is a bitfield array (Definition 131). A majority of assigned validators voting with values means that the core is available.

 indicates the assigned validator group index (Definition 126) is to distribute availability pieces of this candidate.

 indicates the hash of the candidate occupying the core.

 is the candidate descriptor (Definition 96).

 is an Option value (Definition 180) which can contain the collators public key indicating who should author the block.

C.9.4. ParachainHost_persisted_validation_data

Returns the persisted validation data for the given parachain Id and a given occupied core assumption.

Arguments

The parachain Id (Definition 124).

An occupied core assumption (Definition 219).

Return

An Option value (Definition 180) which can contain the persisted validation data (Definition 220). The value is empty if the parachain Id is not

registered or the core assumption is of index , meaning that the core was freed.

Definition 219. Occupied Core Assumption

Definition 220. Persisted Validation Data

S

n ​u C ​s

B ​o

B ​t

n ​t C ​s

b > ​3
2 1

G ​i

C ​h

C ​d

C ​i

2

An occupied core assumption is used for fetching certain pieces of information about a parachain by using the relay chain API. The assumption

indicates how the Runtime API should compute the result. The assumptions, A, is a varying datatype of the following format:

where 0 indicates that the candidate occupying the core was made available and included to free the core, 1 indicates that it timed-out and

freed the core without advancing the parachain and 2 indicates that the core was not occupied to begin with.

A = ​ ​ ​ ​⎩⎨
⎧0

1
2

→
→
→

ϕ

ϕ

ϕ

The persisted validation data provides information about how to create the inputs for the validation of a candidate by calling the Runtime. This

information is derived from the parachain state and will vary from parachain to parachain, although some of the fields may be the same for

every parachain. This validation data acts as a way to authorize the additional data (such as messages) the collator needs to pass to the

validation function.

The persisted validation data, , is a datastructure of the following format:Dpv

D ​ =pv P ​,H ​,H ​,m ​(h i r b)

https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-bitfield-array
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/chapter-anv#defn-candidate-descriptor
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data

C.9.5. ParachainHost_assumed_validation_data

Returns the persisted validation data for the given parachain Id along with the corresponding Validation Code Hash. Instead of accepting validation

about para, matches the validation data hash against an expected one and yields None if they are unequal.

Arguments

The Parachain Id (Definition 124).

Expected Persistent Validation Data Hash (Definition 220).

Return

An Option value (Definition 180) which can contain the pair of persisted validation data (Definition 220) and Validation Code Hash. The value is

None if the parachain Id is not registered or the validation data hash does not match the expected one.

C.9.6. ParachainHost_check_validation_outputs

Checks if the given validation outputs pass the acceptance criteria.

Arguments

The parachain Id (Definition 124).

The candidate commitments (Definition 97).

Return

A boolean indicating whether the candidate commitments pass the acceptance criteria.

C.9.7. ParachainHost_session_index_for_child

Returns the session index that is expected at the child of a block.

Arguments

None

Return

A unsigned 32-bit integer representing the session index.

C.9.8. ParachainHost_validation_code

Fetches the validation code (Runtime) of a parachain by parachain Id.

Arguments

The parachain Id (Definition 124).

where

 is the parent head data (Definition 123).

 is the relay chain block number this is in the context of.

 is the relay chain storage root this is in the context of.

 is the maximum legal size of the PoV block, in bytes.

The persisted validation data is fetched via the Runtime API (Section C.9.4.).

P ​h

H ​i

H ​r

m ​b

CAUTION

TODO clarify session index

https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-persisted-validation-data
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-candidate-commitments
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-persisted-validation-data

The occupied core assumption (Definition 219).

Return

An Option value (Definition 180) containing the full validation code in a byte array. This value is empty if the parachain Id cannot be found or the

assumption is wrong.

C.9.9. ParachainHost_validation_code_by_hash

Returns the validation code (Runtime) of a parachain by its hash.

Arguments

The hash value of the validation code.

Return

An Option value (Definition 180) containing the full validation code in a byte array. This value is empty if the parachain Id cannot be found or the

assumption is wrong.

C.9.10. ParachainHost_validation_code_hash

Returns the validation code hash of a parachain.

Arguments

The parachain Id (Definition 124).

An occupied core assumption (Definition 219).

Return

An Option value (Definition 180) containing the hash value of the validation code. This value is empty if the parachain Id cannot be found or the

assumption is wrong.

C.9.11. ParachainHost_candidate_pending_availability

Returns the receipt of a candidate pending availability for any parachain assigned to an occupied availability core.

Arguments

The parachain Id (Definition 124).

Return

An Option value (Definition 180) containing the committed candidate receipt (Definition 94). This value is empty if the given parachain Id is not

assigned to an occupied availability core.

C.9.12. ParachainHost_candidate_events

Returns an array of candidate events that occurred within the latest state.

Arguments

None

Return

An array of single candidate events, E, of the following format:

where

E = ​ ​ ​ ​⎩⎨
⎧0

1
2

→
→
→

d

d

C ​,h, I ​(r c)

d = C ​,h, I ​,G ​(r c i)

https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chap-runtime-api#defn-occupied-core-assumption
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt

 specifies the event type of the candidate. 0 indicates that the candidate receipt was backed in the latest relay chain block, 1 indicates

that it was included and became a parachain block at the latest relay chain block and 2 indicates that the candidate receipt was not made

available and timed out.

 is the candidate receipt (Definition 94).

 is the parachain head data (Definition 123).

 is the index of the availability core as can be retrieved in Section C.9.3. that the candidate is occupying. If is of variant , then this

indicates the core index the candidate was occupying.

 is the group index (Definition 126) that is responsible of backing the candidate.

C.9.13. ParachainHost_session_info

Get the session info of the given session, if available.

Arguments

The unsigned 32-bit integer indicating the session index.

Return

An Option type (Definition 180) which can contain the session info structure, , of the following format:

where

 indicates the validators of the current session in canonical order. There might be more validators in the current session than validators

participating in parachain consensus, as returned by the Runtime API (Section C.9.1.).

 indicates the validator authority discovery keys for the given session in canonical order. The first couple of validators are equal to the

corresponding validators participating in the parachain consensus, as returned by the Runtime API (Section C.9.1.). The remaining

authorities are not participating in the parachain consensus.

 indicates the assignment keys for validators. There might be more authorities in the session that validators participating in parachain

consensus, as returned by the Runtime API (Section C.9.1.).

 indicates the validator groups in shuffled order.

 is public key of the authority.

 is the authority set Id (Definition 69).

 is an unsigned 32-bit integer indicating the number of availability cores used by the protocol during the given session.

 is an unsigned 32-bit integer indicating the zeroth delay tranche width.

 is an unsigned 32-bit integer indicating the number of samples an assigned validator should do for approval voting.

 is an unsigned 32-bit integer indicating the number of delay tranches in total.

 is an unsigned 32-bit integer indicating how many BABE slots must pass before an assignment is considered a “no-show”.

 is an unsigned 32-bit integer indicating the number of validators needed to approve a block.

E

C ​r

h

I ​c E 2

G ​i

S

S = A,D,K,G, c, z, s, d,x, a()

A = v ​, … v ​(n m)

D = v ​, … v ​(
​n m)

K = v ​, … v ​(n m)

G = g ​, … g ​(n m)

g = A ​, …A ​(n m)

A

D

K

G

v ​n

A ​n

c

z

s

d

x

a

https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-head-data
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-availability-cores
https://spec.polkadot.network/chapter-anv#defn-validator-groups
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/chap-runtime-api#sect-rt-api-validators
https://spec.polkadot.network/sect-finality#defn-authority-set-id

C.9.14. ParachainHost_dmq_contents

Returns all the pending inbound messages in the downward message queue for a given parachain.

Arguments

The parachain Id (Definition 124).

Return

An array of inbound downward messages (Definition 128).

C.9.15. ParachainHost_inbound_hrmp_channels_contents

Returns the contents of all channels addressed to the given recipient. Channels that have no messages in them are also included.

Arguments

The parachain Id (Definition 124).

Return

An array of inbound HRMP messages (Definition 130).

C.9.16. ParachainHost_on_chain_votes

Returns disputes relevant from on-chain, backing votes, and resolved disputes.

Arguments

None

Return

An Option (Definition 180) type which can contain the scraped on-chain votes data (Definition 221).

Definition 221. Scraped On Chain Vote

C.9.17. ParachainHost_pvfs_require_precheck

This runtime API fetches all PVFs that require pre-checking voting. The PVFs are identified by their code hashes. As soon as the PVF gains the

required support, the runtime API will not return the PVF anymore.

Arguments

Contains the scraped runtime backing votes and resolved disputes.

The scraped on-chain votes data, , is a data structure of the following format:

where:

 is the u32 integer representing the session index in which the block was introduced.

 is the set of backing validators for each candidate, represented by its candidate receipt (Definition 94). Each candidate has a list

of , the pair of validator index and validation attestations (Definition 93).

 is a set of dispute statements (Section 8.7.2.1.). Note that the above is unrelated to the backers of the dispute candidates.

SOCV

SOCV = (S ​,BV , d)i

BV = [C ​, [(i, a)]]r

S ​i

BV C ​r

(i, a)

d BV

CAUTION

PVF Pre-Checker subsystem is still Work-in-Progress, hence the below APIs are subject to change.

https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-downward-message
https://spec.polkadot.network/chapter-anv#defn-para-id
https://spec.polkadot.network/chapter-anv#defn-inbound-hrmp-message
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#defn-scraped-on-chain-vote
https://spec.polkadot.network/chapter-anv#defn-candidate-receipt
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#net-msg-dispute-request

None

Return

A list of validation code hashes that require prechecking of votes by validators in the active set.

C.9.18. ParachainHost_submit_pvf_check_statement

This runtime API submits the judgment for a PVF, whether it is approved or not. The voting process uses unsigned transactions. The check is

circulated through the network via gossip, similar to a normal transaction. At some point, the validator will include the statement in the block, where

it will be processed by the runtime. If that was the last vote before gaining the super-majority, this PVF would not be returned by

pvfs_require_precheck (Section C.9.17.) anymore.

Arguments

A PVF pre checking statement (Definition 222) to be submitted into the transaction pool.

Validator Signature (Definition 93).

Return

None

Definition 222. PVF Check Statement

C.9.19. ParachainHost_disputes

This runtime API fetches all on-chain disputes.

Arguments

None

Return

A list of (SessionIndex, CandidateHash, DisputeState).

C.9.20. ParachainHost_executor_params

This runtime API returns execution parameters for the session.

Arguments

Session Index

This is a statement by the validator who ran the pre-checking process for a PVF. A PVF is identified by the ValidationCodeHash. The statement

is valid only during a single session, specified in the session_index .

The PVF Check Statement , is a datastructure of the following format:

where:

 is a boolean denoting if the subject passed pre-checking.

 is the validation code hash.

 is a u32 integer representing the session index.

 is the validator index (Definition 93).

S ​pvf

S ​ =pvf (b,V C ​,S ​,V ​)H i i

b

V C ​H

S ​i

V ​i

CAUTION

TODO clarify DisputeState

https://spec.polkadot.network/chap-runtime-api#sect-rt-api-pvfs-require-precheck
https://spec.polkadot.network/chap-runtime-api#defn-pvf-check-statement
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data
https://spec.polkadot.network/chapter-anv#defn-parachain-inherent-data

Return

Option type of Executor Parameters.

C.10. Module GrandpaApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.10.1. GrandpaApi_grandpa_authorities

This entry fetches the list of GRANDPA authorities according to the genesis block and is used to initialize an authority list at genesis, defined in

Definition 33. Any future authority changes get tracked via Runtime-to-consensus engine messages, as described in Section 3.3.2..

Arguments

None.

Return

An authority list as defined in Definition 33.

C.10.2. GrandpaApi_current_set_id

This entry fetches the list of GRANDPA authority set IDs (Definition 69). Any future authority changes get tracked via Runtime-to-consensus engine

messages, as described in Section 3.3.2..

Arguments

None.

Return

An authority set ID as defined in Definition 69.

C.10.3. GrandpaApi_submit_report_equivocation_unsigned_extrinsic

A GRANDPA equivocation occurs when a validator votes for multiple blocks during one voting subround, as described further in Definition 76. The

Polkadot Host is expected to identify equivocators and report those to the Runtime by calling this function.

Arguments

The equivocation proof of the following format:

where

 is the authority set id as defined in Definition 69.

CAUTION

TODO clarify session index

CAUTION

TODO clarify Executor Parameters

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

​ ​

G ​ =Ep

e =

(id ​, e, r,A ​,B ​,B ​,A ​,B ​,B ​,A ​)V id h
1

n
1

sig
1

h
2

n
2

sig
2

​ ​{0
1

Equivocation at prevote stage
Equivocation at precommit stage

mathrm id ​{ }V

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-sync#sect-consensus-message-digest
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/sect-finality#defn-voter-equivocation
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

 indicates the stage at which the equivocation occurred.

 is the round number the equivocation occurred.

 is the public key of the equivocator.

 is the block hash of the first block the equivocator voted for.

 is the block number of the first block the equivocator voted for.

 is the equivocators signature of the first vote.

 is the block hash of the second block the equivocator voted for.

 is the block number of the second block the equivocator voted for.

 is the equivocators signature of the second vote.

A proof of the key owner in an opaque form as described in Section C.10.4..

Return

A SCALE encoded Option as defined in Definition 180 containing an empty value on success.

C.10.4. GrandpaApi_generate_key_ownership_proof

Generates proof of the membership of a key owner in the specified block state. The returned value is used to report equivocations as described in

Section C.10.3..

Arguments

The authority set id as defined in Definition 69.

The 256-bit public key of the authority.

Return

A SCALE encoded Option as defined in Definition 180 containing the proof in an opaque form.

C.11. Module BabeApi

All calls in this module require Core_initialized_block (Section C.4.3.) to be called beforehand.

C.11.1. BabeApi_configuration

This entry is called to obtain the current configuration of the BABE consensus protocol.

Arguments

None.

Return

A tuple containing configuration data used by the Babe consensus engine.

Table 17. The tuple provided by BabeApi_configuration.

e

r

A ​mathrm id{ }

B ​h
1

B ​n
1

A ​mathrm sig{ { }}
1

B ​h
2

B ​n
2

A ​mathrm sig{ { }}
2

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_generate_key_ownership_proof
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-grandpaapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/sect-finality#defn-authority-set-id
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Name Description Type

SlotDuration

The slot duration in milliseconds. Currently, only the value provided by this

type at genesis will be used. Dynamic slot duration may be supported in the

future.

Unsigned 64bit integer

EpochLength The duration of epochs in slots. Unsigned 64bit integer

Constant
A constant value that is used in the threshold calculation formula as defined

in Definition 55.

Tuple containing two unsigned 64bit

integers

GenesisAuthorities The authority list for the genesis epoch as defined in Definition 33.

Array of tuples containing a 256-bit

byte array and an unsigned 64bit

integer

Randomness The randomness for the genesis epoch 32-byte array

SecondarySlot

Whether this chain should run with a round-robin-style secondary slot and

if this secondary slot requires the inclusion of an auxiliary VRF output

(Section 5.2.).

A one-byte enum as defined in

Definition 54 as .

C.11.2. BabeApi_current_epoch_start

Finds the start slot of the current epoch.

Arguments

None.

Return

A unsigned 64-bit integer indicating the slot number.

C.11.3. BabeApi_current_epoch

Produces information about the current epoch.

Arguments

None.

Return

A data structure of the following format:

where

 is a unsigned 64-bit integer representing the epoch index.

 is an unsigned 64-bit integer representing the starting slot of the epoch.

 is an unsigned 64-bit integer representing the duration of the epoch.

 is an authority list as defined in Definition 33.

 is a 256-bit array containing the randomness for the epoch as defined in Definition 67.

C.11.4. BabeApi_next_epoch

Produces information about the next epoch.

Arguments

2 ​nd

e ​, s ​, d,A, r(i s)

e ​i

s ​s

d

A

r

https://spec.polkadot.network/sect-block-production#defn-babe-constant
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#sect-block-production-lottery
https://spec.polkadot.network/sect-block-production#defn-consensus-message-babe
https://spec.polkadot.network/chap-sync#defn-authority-list
https://spec.polkadot.network/sect-block-production#defn-epoch-randomness

None.

Return

Returns the same data structure as described in Section C.11.3..

C.11.5. BabeApi_generate_key_ownership_proof

Generates proof of the membership of a key owner in the specified block state. The returned value is used to report equivocations as described in

Section C.11.6..

Arguments

The unsigned 64-bit integer indicating the slot number.

The 256-bit public key of the authority.

Return

A SCALE encoded Option as defined in Definition Definition 180 containing the proof in an opaque form.

C.11.6. BabeApi_submit_report_equivocation_unsigned_extrinsic

A BABE equivocation occurs when a validator produces more than one block at the same slot. The proof of equivocation are the given distinct

headers that were signed by the validator and which include the slot number. The Polkadot Host is expected to identify equivocators and report

those to the Runtime using this function.

Arguments

The equivocation proof of the following format:

where

 is the public key of the equivocator.

 is the slot as described in Definition 50 at which the equivocation occurred.

 is the block header of the first block produced by the equivocator.

 is the block header of the second block produced by the equivocator.

Unlike during block execution, the Seal in both block headers is not removed before submission. The block headers are submitted in its full

form.

An proof of the key owner in an opaque form as described in Section C.11.5..

Return

A SCALE encoded Option as defined in Definition 180 containing an empty value on success.

C.12. Module AuthorityDiscoveryApi

All calls in this module require (Section Section C.4.3.) to be called beforehand.

INFO

If there are more than two blocks that cause an equivocation, the equivocation only needs to be reported once i.e. no additional equivocations

must be reported for the same slot.

B ​ =mathrm Ep{ } A ​, s,h ​,h ​(mathrm id{ } 1 2)

A ​mathrm id{ }

s

h ​1

h ​2

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-babeapi_current_epoch
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_submit_report_equivocation_unsigned_extrinsic
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/sect-block-production#defn-epoch-slot
https://spec.polkadot.network/chap-runtime-api#sect-babeapi_generate_key_ownership_proof
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

C.12.1. AuthorityDiscoveryApi_authorities

A function that helps to discover authorities.

Arguments

None.

Return

A byte array of varying size containing 256-bit public keys of the authorities.

C.13. Module SessionKeys

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.13.1. SessionKeys_generate_session_keys

Generates a set of session keys with an optional seed. The keys should be stored within the keystore exposed by the Host API. The seed needs to

be valid and UTF-8 encoded.

Arguments

A SCALE-encoded Option as defined in Definition 180 containing an array of varying sizes indicating the seed.

Return

A byte array of varying size containing the encoded session keys.

C.13.2. SessionKeys_decode_session_keys

Decodes the given public session keys. Returns a list of raw public keys, including their key type.

Arguments

An array of varying size containing the encoded public session keys.

Return

An array of varying size containing tuple pairs of the following format:

where is an array of varying sizes containing the raw public key and is a 4-byte array indicating the key type.

C.14. Module AccountNonceApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.14.1. AccountNonceApi_account_nonce

Get the current nonce of an account. This function can be used by the Polkadot Host implementation when it seems appropriate, such as for the

JSON-RPC API as described in Section C.1.1..

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

k, k ​(mathrm id{ })

k k ​mathrm id{ }

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Arguments

The 256-bit public key of the account.

Return

A 32-bit unsigned integer indicating the nonce of the account.

C.15. Module TransactionPaymentApi

All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.15.1. TransactionPaymentApi_query_info

Returns information of a given extrinsic. This function is not aware of the internals of an extrinsic, but only interprets the extrinsic as some encoded

value and accounts for its weight and length, the Runtime’s extrinsic base weight, and the current fee multiplier.

This function can be used by the Polkadot Host implementation when it seems appropriate, such as for the JSON-RPC API as described in Section

C.1.1..

Arguments

A byte array of varying sizes containing the extrinsic.

The length of the extrinsic. [To do: why is this needed?]

Return

A data structure of the following format:

where

 is the weight of the extrinsic.

 is the "class" of the extrinsic, where a class is a varying data (Definition 178) type defined as:

 is the inclusion fee of the extrinsic. This does not include a tip or anything else that depends on the signature.

C.15.2. TransactionPaymentApi_query_fee_details

Query the detailed fee of a given extrinsic. This function can be used by the Polkadot Host implementation when it seems appropriate, such as for

the JSON-RPC API as described in Section C.1.1..

Arguments

A byte array of varying sizes containing the extrinsic.

The length of the extrinsic.

Return

A data structure of the following format:

where

NOTE

This section describes Version 2 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility.

w, c, f()

w

c

c = ​ ​⎩⎨
⎧ 0 Normal extrinsic

1 Operational extrinsic
2 Mandatory extrinsic, which is always included

f

f , t()

https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type
https://spec.polkadot.network/chap-runtime-api#sect-json-rpc-api
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

 is a SCALE encoded as defined in Definition 180 containing the following data structure:

where

 is the minimum required fee for an extrinsic.

 is the length fee, the amount paid for the encoded length (in bytes) of the extrinsic.

 is the “adjusted weight fee,” which is a multiplication of the fee multiplier and the weight fee. The fee multiplier varies depending on

the usage of the network.

 is the tip for the block author.

C.16. Module TransactionPaymentCallApi
All calls in this module require Core_initialize_block (Section C.4.3.) to be called beforehand.

C.16.1. TransactionPaymentCallApi_query_call_info

Query information of a dispatch class, weight, and fee of a given encoded Call .

Arguments

A byte array of varying sizes containing the Call .

The length of the Call.

Return

A data structure of the following format:

where:

 is the weight of the call.

 is the "class" of the call, where a class is a varying data (Definition 178) type defined as:

 is the partial-fee of the call. This does not include a tip or anything else that depends on the signature.

C.16.2. TransactionPaymentCallApi_query_call_fee_details

Query the fee details of a given encoded Call including tip.

Arguments

A byte array of varying sizes containing the Call .

The length of the Call .

Return

A data structure of the following format:

f

f = f ​,f ​,f ​(b l a)

f ​b

f ​l

f ​a

t

CAUTION

TODO clarify differences between RuntimeCall and Extrinsics

(w, c, f)

w

c

c = ​ ​⎩⎨
⎧ 0 Normal dispatch

1 Operational dispatch
2 Mandatory dispatch, which is always included regardless of their weight

f

(f , t)

https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/chap-runtime-api#sect-rte-core-initialize-block
https://spec.polkadot.network/id-cryptography-encoding#defn-varrying-data-type

where:

 is a SCALE encoded as defined in Definition 180 containing the following data structure:

where:

 is the minimum required fee for the Call .

 is the length fee, the amount paid for the encoded length (in bytes) of the Call .

 is the "adjusted weight fee ", which is a multiplication of the fee multiplier and the weight fee. The fee multiplier varies
depending on the usage of the network.

 is the tip for the block author.

C.17. Module Nomination Pools

C.17.1. NominationPoolsApi_pending_rewards

Runtime API for accessing information about the nomination pools. Returns the pending rewards for the member that the Account ID was given for.

Arguments

The account ID as a SCALE encoded 32-byte address of the sender (Definition 134).

Return

The SCALE encoded balance of type u128 representing the pending reward of the account ID. The default value is Zero in case of errors in

fetching the rewards.

C.17.2. NominationPoolsApi_points_to_balance

Runtime API to convert the number of points to balances given the current pool state, which is often used for unbonding.

Arguments

An unsigned 32-bit integer representing Pool Identifier

An unsigned 32-bit integer Points

Return

An unsigned 32-bit integer Balance

C.17.3. NominationPoolsApi_balance_to_points

Runtime API to convert the given amount of balances to points for the current pool state, which is often used for bonding and issuing new funds in to

the pool.

Arguments

An unsigned 32-bit integer representing Pool Identifier

An unsigned 32-bit integer Balance

Return

An unsigned 32-bit integer Points

f

f = (f ​, f ​, f ​)b l a

f ​b

f ​l

f ​a

t

NOTE

This section describes Version 1 of this API. Please check Core_version (Section C.4.1.) to ensure compatibility. Currently supports only one

RPC endpoint.

https://spec.polkadot.network/id-cryptography-encoding#defn-option-type
https://spec.polkadot.network/id-extrinsics#defn-extrinsic-address
https://spec.polkadot.network/chap-runtime-api#defn-rt-core-version

Glossary

A path graph or a path of nodes.

A sequence of bytes or byte array of length

A set of all byte arrays of length

A non-negative integer in base 256

The little-endian representation of a non-negative interger such that

The little-endian encoding function.

A blockchain is defined as a directed path graph.

Block

A node of the directed path graph (blockchain) C

Genesis Block

The unique sink of blockchain C

Head

The source of blockchain C

The parent of block

UNIX time

The number of milliseconds that have elapsed since the Unix epoch as a 64-bit integer

The block tree of a blockchain

The genesis block, the root of the block tree BT

The path graph from to in .

The head of chain C.

The length of chain as a path graph

The subgraph of path graph containing both and .

P ​n

n

b ​, b ​, … , b ​(0 1 n−1)

n

B ​n

n

I = B ​ …B ​ ​(n 0)256

B = b ​, b ​, … , b ​(0 1 n)

I = B ​ …B ​ ​(n 0)256 b ​ =i : B ​i

Enc ​LE

C

P B()

B

BT

G

CHAIN(B)

G B BT

Head C()

C∣ ∣

C

SubChain B ,B(′)

Chain B() B B′

C ​ BTB()

The set of all subchains of rooted at block .

 i.e. the set of all chains of rooted at genesis block

The longest sub path graph of i.e.

The longest sub path graph of with earliest block arrival time

 i.e. the head of

 is a descendant of in the block tree

The function to retrieve the value stored under a specific key in the state storage.

State trie, trie

The Merkle radix-16 Tree, which stores hashes of storage entries.

The function to encode keys for labeling branches of the trie.

The set of all nodes in the Polkadot state trie.

An individual node in the trie.

A branch node of the trie which has at least one and at most 16 children

A childless leaf node of the trie

The aggregated prefix key of node N

The (suffix) partial key of node N

A function returning an integer in range of {0, . . . ,15} representing the index of a child node of node among the children of

Node value containing the header of node , its partial key and the digest of its childern values

The node header of trie node storing information about the node’s type and kay

The Merkle value of node .

The binary function indicates which child of a given node is present in the trie.

BT B

C,C BT()

C ​ BTG() BT

Longest-Chain BT()

BT C : C =∣ ∣ max ​ C ​C ​∈Ci
∣ i∣

Longest-Path BT()

P BT()

Deepest-Leaf BT()

HeadLongest-Path(BT) Longest-Path BT()

B > B′

B B′

StoredValue k()

KeyEncode k()

N

N

N ​b

N ​l

pk ​N
Agr

pk ​N

Index ​N

N N

v ​N

N

Head ​N

N

H N()

N

ChildrenBitmap

The subvalue of a trie node .

Child storage

A sub storage of the state storage which has the same structure, although being stored separately

Child trie

State trie of a child storage

Transaction Queue

See Definition 14.

The 32-byte Blake2b hash of the header of the parent of the block.

Block number, the incremental integer index of the current block in the chain.

The hash of the root of the Merkle trie of the state storage at a given block

An auxiliary field in the block header used by Runtime to validate the integrity of the extrinsics composing the block body.

,

A block header used to store any chain-specific auxiliary data.

The hash of the header of block

The body of block consisting of a set of extrinsics

Vote message broadcasted by the voter v as part of the finality protocol

The commit message broadcasted by voter indicating that they have finalized bock in round

GRANDPA voter node, which casts votes in the finality protocol

The private key of voter

The public key of voter

The set of all GRANDPA voters for at block

GRANDPA protocol state consisting of the set of voters, the number of times voters set has changed, and the current round number.

The voting round counter in the finality protocol

A GRANDPA vote casted in favor of block B

sv ​N

N

H ​p

H ​,H ​ Bi i()

H ​r

H ​e

H ​d H ​ Bd()

H ​ Bh()

B

Body B()

B

M ​v
r,stage

M ​ Bv
r,Fin()

v B r

v

k ​v
pr

v

v ​id

v

V ​,VB

B

GS

r

V ​B

https://spec.polkadot.network/chap-state#defn-transaction-queue

A GRANDPA vote casted by voter during the pre-vote stage of round

A GRANDPA vote casted by voter during the pre-commit stage of round

The justification for pre-committing or committing to block in round of finality protocol

The signature of voter on their vote to block B, broadcasted during the specified stage of finality round

The set of all equivocator voters in sub-round ‘‘stage'' of round

The set of all equivocator voters in sub-round ‘‘stage'' of round observed by voter

The set of observed direct votes for block B in round

The set of total votes observed by voter v in sub-round ‘‘stage'' of round r

The set of all observed votes by in the sub-round “stage” of round (directly or indirectly) for block

The currently pre-voted block in round . The GRANDPA GHOST of round

Account key,

A key pair of types accepted by the Polkadot protocol which can be used to sign transactions

SCALE encoding of value

A tuple of values 's each of different type

Varying Data Types

A data type representing any of varying types .

Sequence of values of the same type

SCALE length encoding, aka. compact encoding of non-negative interger of arbitrary size.

Hex encoding

V ​v
r,pv

v r

V ​v
r,pc

v r

J Br,stage()

B r

Sign ​ B
v ​{ i}
r,stage()

v r

E r,stage

r

E ​

obs v{ ()}
r,stage

r v

V D ​ B
obs v{ ()}
r,stage ()

r

V ​

obs v{ ()}
r,stage

V ​ B
obs v{ ()}
r,stage ()

v r B

B ​v
r,pv

r r

sk , pk(a a)

Enc ​ ASC()

A

T =: A ​, … ,A ​(1 n)

A ​i

T = T ​, … ,T ​{ 1 n}

T ​, … ,T ​1 n

S =: A ​, … ,A ​1 n

A ​i

Enc ​ nSC{ }
Len ()

n

Enc ​ PKHE()

